[1] DE ALMEIDA A M, MARTINS P, DE SOUZA M C. Min-degree constrained minimum spanning tree problem: complexity, properties, and formulations[J]. International Transactions in Operational Research, 2012, 19(3): 323-352.
[2] DE ALMEIDA A M, MARTINS P, SOUZA M C. MD-MST is NP-hard for d ≥ 3[J]. Electronic Notes in Discrete Mathematics, 2010, 36: 9-15.
[3] AKGüN ?, TANSEL B ?. Min-degree constrained minimum spanning tree problem: new formulation via Miller-Tucker-Zemlin constraints[J]. Computers & Operations Research, 2010, 37(1): 72-82.
[4] MARTINEZ L C, DA CUNHA A S. The min-degree constrained minimum spanning tree problem: formulations and branch-and-cut algorithm[J]. Discrete Applied Mathematics, 2014, 164: 210-224.
[5] TORKESTANI J A. A learning automata-based algorithm to the stochastic min-degree constrained minimum spanning tree problem[J]. International Journal of Foundations of Computer Science, 2013, 24(3): 329-348.
[6] MARTINS P, DE SOUZA M C. VNS and second order heuristics for the min-degree constrained minimum spanning tree problem[J]. Computers & Operations Research, 2009, 36(11): 2969-2982.
[7] SALGUEIRO R, DE ALMEIDA A, OLIVEIRA O. New genetic algorithm approach for the min-degree constrained minimum spanning tree[J]. European Journal of Operational Research, 2017, 258(3): 877-886.
[8] SINGH K, SUNDAR S. A hybrid steady-state genetic algorithm for the min-degree constrained minimum spanning tree problem[J]. European Journal of Operational Research, 2019, 276(1): 88-105.
[9] MURTHY V V R, SINGH A. An ant colony optimization algorithm for the min-degree constrained minimum spanning tree problem[C]//Proceedings of the 2013 International Conference on Swarm, Evolutionary, and Memetic Computing. Berlin, Heidelberg: Springer, 2013: 85-94.
[10] GHOSHAL S, SUNDAR S. Two approaches for the min-degree constrained minimum spanning tree problem[J]. Applied Soft Computing, 2021, 111: 107715.
[11] SONG Y J, WU Y T, GUO Y Y, et al. Reinforcement learning-assisted evolutionary algorithm: a survey and research opportunities[J]. Swarm and Evolutionary Computation, 2024, 86: 101517.
[12] 王扬, 陈智斌, 吴兆蕊, 等. 强化学习求解组合最优化问题的研究综述[J]. 计算机科学与探索, 2022, 16(2): 261-279.
WANG Y, CHEN Z B, WU Z R, et al. Review of reinforcement learning for combinatorial optimization problem[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 261-279.
[13] LI W, LIANG P, SUN B, et al. Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy[J]. Swarm and Evolutionary Computation, 2023, 78: 101274.
[14] YIN S Y, JIN M, LU H X, et al. Reinforcement-learning-based parameter adaptation method for particle swarm optimization[J]. Complex & Intelligent Systems, 2023, 9(5): 5585- 5609.
[15] 韩红桂, 徐子昂, 王晶晶. 基于Q学习的多任务多目标粒子群优化算法[J]. 控制与决策, 2023, 38(11): 3039-3047.
HAN H G, XU Z A, WANG J J. A Q-learning-based multi-task multi-objective particle swarm optimization algorithm[J]. Control and Decision, 2023, 38(11): 3039-3047.
[16] WANG X J, WANG F, HE Q, et al. A multi-swarm optimizer with a reinforcement learning mechanism for large-scale optimization[J]. Swarm and Evolutionary Computation, 2024, 86: 101486.
[17] DIAS F C S, CAMPêLO M, SOUZA C, et al. Min-degree constrained minimum spanning tree problem with fixed centrals and terminals: complexity, properties and formulations[J]. Computers & Operations Research, 2017, 84: 46-61.
[18] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948.
[19] 郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4): 930-946.
GUO Q, ZHENG Q X. Multi-strategy improved dung beetle optimizer and its application[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 930-946.
[20] 傅彦铭, 许励强, 祁康恒, 等. 角逐和信息素引导的多目标黑寡妇优化算法[J]. 计算机科学与探索, 2023, 17(12): 2913-2927.
FU Y M, XU L Q, QI K H, et al. Multi-objective black widow algorithm guided by competitive mechanism and pheromone mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2913-2927.
[21] 夏斌, 王超, 孙鑫, 等. 基于改进萤火虫算法的永磁同步电机多模态优化设计[J]. 电机与控制学报, 2024, 28(4): 131-138.
XIA B, WANG C, SUN X, et al. Multi-modal optimal design of permanent magnet synchronous motor based on improved firefly algorithm[J]. Electric Machines and Control, 2024, 28(4): 131-138.
[22] 康立山, 谢云, 尤矢勇, 等. 非数值并行算法(第一册)模拟退火算法[M]. 北京: 科学出版社, 1994: 56-83.
KANG L S, XIE Y, YOU S Y, et al. Non-numerical parallel algorithms. Volume 1, simulated annealing algorithm[M]. Beijing: Science Press, 1994: 56-83. |