Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (1): 242-252.DOI: 10.3778/j.issn.1673-9418.2009020
• Theory and Algorithm • Previous Articles Next Articles
LIU Yu, MENG Min+(), WU Jigang
Received:
2020-09-08
Revised:
2020-11-06
Online:
2022-01-01
Published:
2020-11-19
About author:
LIU Yu, born in 1996, M.S. candidate. His research interests include image processing and face recognition.Supported by:
通讯作者:
+ E-mail: minmeng@gdut.edu.cn作者简介:
刘宇(1996—),男,湖南衡阳人,硕士研究生,主要研究方向为图像处理、人脸识别。基金资助:
CLC Number:
LIU Yu, MENG Min, WU Jigang. Semi-supervised Multi-view Classification via Consistency Constraints[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 242-252.
刘宇, 孟敏, 武继刚. 一致性约束的半监督多视图分类[J]. 计算机科学与探索, 2022, 16(1): 242-252.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2009020
符号 | 含义 |
---|---|
| 第v个视图的投影矩阵 |
| 第v个视图的样本矩阵 |
| 原始数据的标签矩阵 |
| 预测标签矩阵 |
| 相似矩阵 |
| 拉普拉斯矩阵 |
| 单位矩阵 |
| 全为1的列向量 |
| 列向量 |
| F范数与2范数 |
| 迹函数 |
| 秩函数 |
| 超参数 |
| 权重 |
Table 1 Symbolic interpretation
符号 | 含义 |
---|---|
| 第v个视图的投影矩阵 |
| 第v个视图的样本矩阵 |
| 原始数据的标签矩阵 |
| 预测标签矩阵 |
| 相似矩阵 |
| 拉普拉斯矩阵 |
| 单位矩阵 |
| 全为1的列向量 |
| 列向量 |
| F范数与2范数 |
| 迹函数 |
| 秩函数 |
| 超参数 |
| 权重 |
方法 | ORL数据库上不同标签比例下分类准确率/% | Yale数据库上不同标签比例下分类准确率/% | ||||||
---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 10% | 20% | 30% | 40% | |
LP(1) | 54.03±3.92 | 67.25±3.67 | 73.58±2.95 | 77.27±2.73 | 38.60±5.86 | 53.01±5.04 | 58.63±3.92 | 61.47±3.63 |
LP(2) | 70.89±2.34 | 83.18±2.42 | 88.60±3.21 | 93.10±2.21 | 45.27±8.72 | 63.12±6.78 | 72.22±4.40 | 73.73±4.15 |
LP(3) | 59.79±3.77 | 73.67±2.15 | 80.06±2.12 | 84.59±2.20 | 44.27±7.23 | 63.10±7.45 | 68.96±4.51 | 74.59±3.92 |
AMGL | 85.67±2.00 | 91.22±2.03 | 94.66±1.05 | 96.26±1.42 | 64.72±19.2 | 81.64±4.82 | 83.20±5.28 | 85.20±5.76 |
MVAR | 76.76±1.45 | 90.10±2.72 | 96.35±1.53 | 98.01±1.29 | 60.60±7.43 | 81.71±3.50 | 83.74±2.07 | 87.10±2.84 |
MLAN | 71.00±3.28 | 80.42±2.94 | 85.07±2.84 | 88.63±2.92 | 58.89±15.3 | 70.08±9.89 | 77.92±3.25 | 81.97±4.72 |
FISH-MML | 54.81±3.89 | 67.94±3.30 | 79.46±2.74 | 84.33±2.31 | 40.70±8.35 | 55.56±8.12 | 61.00±7.82 | 65.71±4.26 |
SMCC | 84.17±2.32 | 92.19±1.83 | 95.00±1.52 | 97.08±1.36 | 74.07±9.71 | 82.67±7.82 | 85.33±4.92 | 89.04±3.57 |
Table 2 Performance (mean±standard deviation) of different algorithms on ORL and Yale databases
方法 | ORL数据库上不同标签比例下分类准确率/% | Yale数据库上不同标签比例下分类准确率/% | ||||||
---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 10% | 20% | 30% | 40% | |
LP(1) | 54.03±3.92 | 67.25±3.67 | 73.58±2.95 | 77.27±2.73 | 38.60±5.86 | 53.01±5.04 | 58.63±3.92 | 61.47±3.63 |
LP(2) | 70.89±2.34 | 83.18±2.42 | 88.60±3.21 | 93.10±2.21 | 45.27±8.72 | 63.12±6.78 | 72.22±4.40 | 73.73±4.15 |
LP(3) | 59.79±3.77 | 73.67±2.15 | 80.06±2.12 | 84.59±2.20 | 44.27±7.23 | 63.10±7.45 | 68.96±4.51 | 74.59±3.92 |
AMGL | 85.67±2.00 | 91.22±2.03 | 94.66±1.05 | 96.26±1.42 | 64.72±19.2 | 81.64±4.82 | 83.20±5.28 | 85.20±5.76 |
MVAR | 76.76±1.45 | 90.10±2.72 | 96.35±1.53 | 98.01±1.29 | 60.60±7.43 | 81.71±3.50 | 83.74±2.07 | 87.10±2.84 |
MLAN | 71.00±3.28 | 80.42±2.94 | 85.07±2.84 | 88.63±2.92 | 58.89±15.3 | 70.08±9.89 | 77.92±3.25 | 81.97±4.72 |
FISH-MML | 54.81±3.89 | 67.94±3.30 | 79.46±2.74 | 84.33±2.31 | 40.70±8.35 | 55.56±8.12 | 61.00±7.82 | 65.71±4.26 |
SMCC | 84.17±2.32 | 92.19±1.83 | 95.00±1.52 | 97.08±1.36 | 74.07±9.71 | 82.67±7.82 | 85.33±4.92 | 89.04±3.57 |
方法 | MSRCv1数据库上不同标签比例下分类准确率/% | HW数据库上不同标签比例下分类准确率/% | ||||||
---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 10% | 20% | 30% | 40% | |
LP(1) | 62.58±5.30 | 69.27±5.14 | 75.25±3.20 | 78.32±3.44 | 97.08±1.95 | 97.21±1.82 | 97.39±1.21 | 97.50±0.95 |
LP(2) | 62.95±6.65 | 73.29±4.85 | 79.32±4.54 | 82.97±2.14 | 80.22±2.19 | 80.33±1.90 | 80.38±2.07 | 80.93±1.25 |
LP(3) | 59.78±5.37 | 66.42±4.34 | 70.36±2.07 | 71.87±4.66 | 74.67±2.60 | 76.25±2.24 | 77.21±1.31 | 77.67±1.56 |
LP(4) | 60.22±9.99 | 68.91±4.46 | 73.92±3.73 | 75.73±3.41 | 67.89±2.28 | 69.31±1.95 | 69.71±2.52 | 71.17±2.14 |
LP(5) | n/a | n/a | n/a | n/a | 67.83±3.12 | 69.13±2.51 | 69.64±1.89 | 71.08±1.53 |
LP(6) | n/a | n/a | n/a | n/a | 43.89±2.34 | 47.31±1.50 | 47.93±1.02 | 50.92±2.36 |
AMGL | 83.60±3.20 | 88.12±2.80 | 89.56±1.40 | 90.96±1.20 | 90.65±1.63 | 93.45±1.95 | 95.11±1.70 | 96.00±1.26 |
MVAR | 86.46±3.74 | 90.76±1.51 | 91.47±1.71 | 93.38±1.94 | 85.84±2.39 | 88.97±1.68 | 90.28±1.37 | 91.09±0.88 |
MLAN | 83.89±2.72 | 88.75±2.70 | 89.69±1.78 | 91.07±1.72 | 97.59±1.03 | 97.88±0.81 | 97.89±0.58 | 98.05±0.62 |
FISH-MML | 77.78±3.32 | 84.05±1.91 | 86.26±1.52 | 87.38±1.28 | 93.01±0.62 | 94.69±1.15 | 95.56±1.30 | 96.78±1.08 |
SMCC | 89.42±2.97 | 91.31±2.35 | 92.65±1.82 | 93.49±1.75 | 97.61±1.32 | 98.06±0.95 | 98.24±0.65 | 98.35±0.57 |
Table 3 Performance (mean±standard deviation) of different algorithms on MSRCv1 and HW databases
方法 | MSRCv1数据库上不同标签比例下分类准确率/% | HW数据库上不同标签比例下分类准确率/% | ||||||
---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 10% | 20% | 30% | 40% | |
LP(1) | 62.58±5.30 | 69.27±5.14 | 75.25±3.20 | 78.32±3.44 | 97.08±1.95 | 97.21±1.82 | 97.39±1.21 | 97.50±0.95 |
LP(2) | 62.95±6.65 | 73.29±4.85 | 79.32±4.54 | 82.97±2.14 | 80.22±2.19 | 80.33±1.90 | 80.38±2.07 | 80.93±1.25 |
LP(3) | 59.78±5.37 | 66.42±4.34 | 70.36±2.07 | 71.87±4.66 | 74.67±2.60 | 76.25±2.24 | 77.21±1.31 | 77.67±1.56 |
LP(4) | 60.22±9.99 | 68.91±4.46 | 73.92±3.73 | 75.73±3.41 | 67.89±2.28 | 69.31±1.95 | 69.71±2.52 | 71.17±2.14 |
LP(5) | n/a | n/a | n/a | n/a | 67.83±3.12 | 69.13±2.51 | 69.64±1.89 | 71.08±1.53 |
LP(6) | n/a | n/a | n/a | n/a | 43.89±2.34 | 47.31±1.50 | 47.93±1.02 | 50.92±2.36 |
AMGL | 83.60±3.20 | 88.12±2.80 | 89.56±1.40 | 90.96±1.20 | 90.65±1.63 | 93.45±1.95 | 95.11±1.70 | 96.00±1.26 |
MVAR | 86.46±3.74 | 90.76±1.51 | 91.47±1.71 | 93.38±1.94 | 85.84±2.39 | 88.97±1.68 | 90.28±1.37 | 91.09±0.88 |
MLAN | 83.89±2.72 | 88.75±2.70 | 89.69±1.78 | 91.07±1.72 | 97.59±1.03 | 97.88±0.81 | 97.89±0.58 | 98.05±0.62 |
FISH-MML | 77.78±3.32 | 84.05±1.91 | 86.26±1.52 | 87.38±1.28 | 93.01±0.62 | 94.69±1.15 | 95.56±1.30 | 96.78±1.08 |
SMCC | 89.42±2.97 | 91.31±2.35 | 92.65±1.82 | 93.49±1.75 | 97.61±1.32 | 98.06±0.95 | 98.24±0.65 | 98.35±0.57 |
[1] | DALAL N, TRIGGS B, SCHMID C. Human detection using oriented histograms of flow and appearance[C]// LNCS 3952: Proceedings of the 9th European Conference on Computer Vision, Graz, May 7-13, 2006. Berlin, Heidelberg: Springer, 2006: 428-441. |
[2] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
DOI URL |
[3] |
OJALA T, PIETIKÄINEN M, MÄENPÄÄ T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987.
DOI URL |
[4] | LI S, FU Y. Robust subspace discovery through supervised low-rank constraints[C]// Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, Apr 24-26, 2014. Philadelphia: SIAM, 2014: 163-171. |
[5] | DING Z M, FU Y. Low-rank common subspace for multi-view learning[C]// Proceedings of the 2014 IEEE International Conference on Data Mining, Shenzhen, Dec 14-17, 2014.Washington: IEEE Computer Society, 2014: 110-119. |
[6] | DING Z M, FU Y. Robust multi-view subspace learning through dual low-rank decompositions[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 1181-1187. |
[7] |
KAN M, SHAN S, ZHANG H, et al. Multi-view discriminant analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1):188-194.
DOI URL |
[8] | ZHAO H, DING Z, FU Y. Multi-view clustering via deep matrix factorization[C]// Proceedings of the 31st AAAI Con-ference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 2921-2927. |
[9] | LU Y, LIU J X, KONG X Z, et al. A convex multi-view low-rank sparse regression for feature selection and clustering[C]// Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, Nov 13-16, 2017. Washington: IEEE Computer Society, 2017: 2183-2186. |
[10] |
ZHONG J, WANG N, LIN Q, et al. Weighted feature selection via discriminative sparse multi-view learning[J]. Knowledge Based Systems, 2019, 178:132-148.
DOI URL |
[11] | CAI X, NIE F, HUANG H. Heterogeneous image features integration via multi-modal semi-supervised learning model[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington:IEEE Computer Society, 2013: 1737-1744. |
[12] | HAN L, WU F, JING X Y. Semi-supervised multi-view manifold discriminant intact space learning[J]. KSII Transactions on Internet & Information Systems, 2018, 12(9):4317-4335. |
[13] | BO X, KANG Z, ZHAO Z, et al. Latent multi-view semi-supervised classification[C]// Proceedings of the 11th Asian Conference on Machine Learning, Nagoya, Nov 17-19, 2019: 348-362. |
[14] | LIU S, DING C, JIANG F, et al. Auto-weighted multi-view learning for semi-supervised graph clustering[J]. Neuro-computing, 2019, 362:19-32. |
[15] |
ZHANG L, ZHANG D. Visual understanding via multi-feature shared learning with global consistency[J]. IEEE Transactions on Multimedia, 2015, 18(2):247-259.
DOI URL |
[16] | WANG X B, GUO X J, LEI Z, et al. Exclusivity-consistency regularized multi-view subspace clustering[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1-9. |
[17] | TAO Y S, YUAN H L, LAI C S, et al. Multi-view collab-orative representation classification[C]// Proceedings of the 2019 International Conference on Machine Learning and Cybernetics, Kobe, Jul 7-10, 2019. Piscataway: IEEE, 2019: 1-6. |
[18] | ZHANG C Q, HU Q H, FU H Z, et al. Latent multi-view subspace clustering[C]// Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4333-4341. |
[19] |
DING Z, FU Y. Robust multiview data analysis through collective low-rank subspace[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(5):1986-1997.
DOI URL |
[20] | ZHU X J, GHAHRAMANI Z, LAFFERTY J D. Semi-supervised learning using Gaussian fields and harmonic functions[C]// Proceedings of the 20th International Conference on Machine Learning, Washington, Aug 21-24, 2003. Menlo Park: AAAI, 2003: 912-919. |
[21] |
NIE F P, XU D, TSANG I H, et al. Flexible manifold embedding: a framework for semi-supervised and unsuper-vised dimension reduction[J]. IEEE Transactions on Image Processing, 2010, 19(7):1921-1932.
DOI URL |
[22] | NIE F P, LI J, LI X L. Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 1881-1887. |
[23] |
NIE F P, CAI G H, LI J, et al. Auto-weighted multi-view learning for image clustering and semi-supervised classifi-cation[J]. IEEE Transactions on Image Processing, 2017, 27(3):1501-1511.
DOI URL |
[24] |
TAO H, HOU C P, NIE F P, et al. Scalable multi-view semi-supervised classification via adaptive regression[J]. IEEE Transactions on Image Processing, 2017, 26(9):4283-4296.
DOI URL |
[25] | ZHANG C Q, LIU Y Q, LIU Y, et al. FISH-MML: Fisher-HSIC multi-view metric learning[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3054-3060. |
[26] |
BOYD S P, PARIKH N, CHU E, et al. Distributed optimi-zation and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1):1-122.
DOI URL |
[27] | HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]// Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, Oct 17-20, 2005. Washington: IEEE Computer Society, 2005: 1208-1213. |
[28] | MOHAR B. The Laplacian spectrum of graphs[C]// Procee-dings of the 6th Quadrennial International Conference on the Theory and Applications of Graphs, May 30-Jun 3, 1988. New York: John Wiley & Sons, Inc, 1991: 871-898. |
[29] | CHUNG F R K. Spectral graph theory (CBMS regional conference series in mathematics 92) [M]. New York: Cam-bridge University Press, 1997. |
[30] | GRETTON A, BOUSQUET O, SMOLA A J, et al. Meas-uring statistical dependence with Hilbert-Schmidt norms[C]// LNCS 3734: Proceedings of the 16th International Conference on Algorithmic Learning Theory, Singapore, Oct 8-11, 2005. Berlin, Heidelberg: Springer, 2005: 63-77. |
[31] |
FAN K. On a theorem of Weyl concerning eigenvalues of linear transformations: II[J]. Proceedings of the National Academy of Sciences, 1950, 35(1):652-655.
DOI URL |
[32] | LUO S R, ZHANG C Q, ZHANG W, et al. Consistent and specific multi-view subspace clustering[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 3730-3737. |
[33] |
ZHANG C Q, FU H Z, HU Q H, et al. Flexible multi-view dimensionality coreduction[J]. IEEE Transactions on Image Processing, 2017, 26(2):648-659.
DOI URL |
[34] | CAI X, NIE F P, HUANGE H, et al. Heterogeneous image feature integration via multi-modal spectral clustering[C]// Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, Jun 20-25, 2011. Washington: IEEE Computer Society, 2011: 1977-1984. |
[1] | PAN Yu, CHEN Xiaohong, LI Shunming, LI Jiyong. Chunk Incremental Canonical Correlation Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1809-1818. |
[2] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[3] | LI Guangli, YUAN Tian, LI Chuanxiu, WU Renzhong, ZHUO Jianwu, ZHANG Hongbin. Breast Mass Recognition Model via Deep-Level Pathological Information Mining [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 413-427. |
[4] | LYU Haoyuan, YU Lu, ZHOU Xingyu, DENG Xiang. Review of Semi-supervised Deep Learning Image Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1038-1048. |
[5] | FAN Ruidong, HOU Chenping. Robust Auto-weighted Multi-view Subspace Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1062-1073. |
[6] | LIANG Ling, DENG Zhaohong, WANG Shitong. Multi-view Fuzzy Clustering Combining Visual and Hidden Information with Feature Weighting [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1092-1102. |
[7] | ZHANG Wei, DENG Zhaohong, WANG Shitong. Kernel-Induced Incomplete Multi-view Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 284-293. |
[8] | LI Huirong, ZHANG Lin, ZHAO Pengjun, LI Chao. Semi-supervised Concept Factorization Algorithm with Local Coordinate Constraint [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 379-388. |
[9] | ZHANG Pei, ZHU En, CAI Zhiping. One-Stage Partition-Fusion Multi-view Subspace Clustering Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2413-2420. |
[10] | YAO Xiaohong, HUANG Hengjun. Semi-supervised Clustering Method for Non-negative Functional Data [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2438-2448. |
[11] | YANG Haitao, DENG Zhaohong, WANG Shitong. Recognition of RNA-Binding Protein by Fusion of Multi-view and Multi-label Learning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2193-2205. |
[12] | XIN Like, YANG Wanqi, YANG Ming. Incomplete Multi-view Classification via Discriminative and Sparse Representation [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1938-1948. |
[13] | CAO Jiawei, QIAN Pengjiang. Nonnegative Matrix Factorization with Joint Regularization of Manifold Learning and Pairwise Constraints [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1211-1220. |
[14] | LIU Yingying, WANG Shitong. Novel Semi-Supervised Learning Method by Elastic-Force Theory Propagation [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 606-618. |
[15] | TIAN Xiaobin, DENG Zhaohong, WANG Shitong. Multi-view Epilepsy Detection Algorithm Combining Deep and Shallow Features [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1712-1726. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/