Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (4): 950-958.DOI: 10.3778/j.issn.1673-9418.2011039
• Graphics and Image • Previous Articles
Received:
2020-11-12
Revised:
2021-01-14
Online:
2022-04-01
Published:
2021-02-04
About author:
ZHU Weijie, born in 1996, M.S. candidate. His research interests include deep learning and pattern recognition.Supported by:
通讯作者:
+ E-mail: chenying@jiangnan.edu.cn作者简介:
朱伟杰(1996—),男,安徽马鞍山人,硕士研究生,主要研究方向为深度学习、模式识别。基金资助:
CLC Number:
ZHU Weijie, CHEN Ying. Micro-expression Recognition Convolutional Network for Dual-stream Temporal-Domain Information Interaction[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 950-958.
朱伟杰, 陈莹. 双流时间域信息交互的微表情识别卷积网络[J]. 计算机科学与探索, 2022, 16(4): 950-958.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2011039
Layer | DSTICNN32 | Stride | DSTICNN64 | Stride |
---|---|---|---|---|
Input | 32×112×112 | 64×112×112 | ||
Conv1 | (4×3×3,16) | Ss:2,Ts:2 | (8×3×3, 16) | Ss:2,Ts:4 |
Pool1 | 1×2×2 | Ss:2,Ts:1 | 1×2×2 | Ss:2,Ts:1 |
Conv2 | (3×3×3, 32) | Ss:1,Ts:1 | (3×3×3, 32) | Ss:1,Ts:1 |
Pool2 | 2×2×2 | Ss:2,Ts:2 | 2×2×2 | Ss:2,Ts:2 |
Conv3 | (3×3×3, 64) | Ss:1,Ts:1 | (3×3×3, 64) | Ss:1,Ts:1 |
Pool3 | 2×2×2 | Ss:2,Ts:2 | 2×2×2 | Ss:2,Ts:2 |
Conv4 | (4×3×3, 128) | Ss:1,Ts:1 | (4×3×3, 128) | Ss:1,Ts:1 |
Pool4 | 1×2×2 | Ss:1,Ts:2 | 1×2×2 | Ss:1,Ts:2 |
Table 1 Network structure of DSTICNN
Layer | DSTICNN32 | Stride | DSTICNN64 | Stride |
---|---|---|---|---|
Input | 32×112×112 | 64×112×112 | ||
Conv1 | (4×3×3,16) | Ss:2,Ts:2 | (8×3×3, 16) | Ss:2,Ts:4 |
Pool1 | 1×2×2 | Ss:2,Ts:1 | 1×2×2 | Ss:2,Ts:1 |
Conv2 | (3×3×3, 32) | Ss:1,Ts:1 | (3×3×3, 32) | Ss:1,Ts:1 |
Pool2 | 2×2×2 | Ss:2,Ts:2 | 2×2×2 | Ss:2,Ts:2 |
Conv3 | (3×3×3, 64) | Ss:1,Ts:1 | (3×3×3, 64) | Ss:1,Ts:1 |
Pool3 | 2×2×2 | Ss:2,Ts:2 | 2×2×2 | Ss:2,Ts:2 |
Conv4 | (4×3×3, 128) | Ss:1,Ts:1 | (4×3×3, 128) | Ss:1,Ts:1 |
Pool4 | 1×2×2 | Ss:1,Ts:2 | 1×2×2 | Ss:1,Ts:2 |
方法 | SMIC | CASME Ⅱ |
---|---|---|
LBP-TOP[ | 52.80 | 63.41 |
Quang等[ | 59.80 | 70.10 |
Takalkar等[ | — | 75.57 |
Hu等[ | 65.10 | 66.20 |
Liu等[ | 75.30 | 82.00 |
ICE-GAN[ | 79.10 | 86.80 |
Dual-Inception[ | 61.49 | 81.32 |
STRCN-G[ | 72.30 | 80.30 |
Xia等[ | 66.00 | 81.31 |
DSTICNN32_JS_MSE | 81.79 | 83.65 |
DSTICNN64_JS_MSE | 85.93 | 80.60 |
Table 2 Experimental results of SMIC and CASME Ⅱ databases %
方法 | SMIC | CASME Ⅱ |
---|---|---|
LBP-TOP[ | 52.80 | 63.41 |
Quang等[ | 59.80 | 70.10 |
Takalkar等[ | — | 75.57 |
Hu等[ | 65.10 | 66.20 |
Liu等[ | 75.30 | 82.00 |
ICE-GAN[ | 79.10 | 86.80 |
Dual-Inception[ | 61.49 | 81.32 |
STRCN-G[ | 72.30 | 80.30 |
Xia等[ | 66.00 | 81.31 |
DSTICNN32_JS_MSE | 81.79 | 83.65 |
DSTICNN64_JS_MSE | 85.93 | 80.60 |
方法 | 损失函数 | SMIC | CASME Ⅱ |
---|---|---|---|
DSTICNN32 | 交叉熵 | 68.55 | 69.41 |
DSTICNN64 | 69.34 | 72.87 | |
DSTICNN32 | 交叉熵+KL | 72.64 | 76.50 |
DSTICNN64 | 72.72 | 76.50 | |
DSTICNN32 | 交叉熵+KL+均方差 | 76.66 | 82.21 |
DSTICNN64 | 79.13 | 78.78 | |
DSTICNN32 | 交叉熵+JS | 76.45 | 81.61 |
DSTICNN64 | 81.31 | 78.34 | |
DSTICNN32 | 交叉熵+JS+均方差 | 81.70 | 83.65 |
DSTICNN64 | 85.93 | 80.60 |
Table 3 Ablation results from SMIC and CASME Ⅱ databases %
方法 | 损失函数 | SMIC | CASME Ⅱ |
---|---|---|---|
DSTICNN32 | 交叉熵 | 68.55 | 69.41 |
DSTICNN64 | 69.34 | 72.87 | |
DSTICNN32 | 交叉熵+KL | 72.64 | 76.50 |
DSTICNN64 | 72.72 | 76.50 | |
DSTICNN32 | 交叉熵+KL+均方差 | 76.66 | 82.21 |
DSTICNN64 | 79.13 | 78.78 | |
DSTICNN32 | 交叉熵+JS | 76.45 | 81.61 |
DSTICNN64 | 81.31 | 78.34 | |
DSTICNN32 | 交叉熵+JS+均方差 | 81.70 | 83.65 |
DSTICNN64 | 85.93 | 80.60 |
[1] | HAGGARD E A. Micromomentary facial expressions as in-dicators of ego mechanisms in psychotherapy[J]. Methods of Research in Psychotherapy, 1966: 154-165. |
[2] | 张爱梅, 徐杨. 注意力分层双线性池化残差网络的表情识别[J]. 计算机工程与应用, 2020, 56(23):161-166. |
ZHANG A M, XU Y. Attention hierarchical bilinear pooling residual network for expression recognition[J]. Computer En-gineering and Applications, 2020, 56(23):161-166. | |
[3] | PFISTER T, LI X B, ZHAO G Y, et al. Recognising spon-taneous facial micro-expressions[C]// Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 1449-1456. |
[4] | WANG Y D, SEE J, PHAN R C W, et al. LBP with six inter-section points: reducing redundant information in LBP-TOP for micro-expression recognition[C]// LNCS 9003: Proceedings of the 12th Asian Conference on Computer Vision, Singapore, Nov 1-5, 2014. Cham: Springer, 2014: 525-537. |
[5] | 张轩阁, 田彦涛, 郭艳君. 基于光流与LBP-TOP特征结合的微表情识别[J]. 吉林大学学报(信息科学版), 2015, 33(5):516-523. |
ZHANG X G, TIAN Y T, GUO Y J. Micro-expression reco-gnition based on feature combination of optical flow and LBP-TOP[J]. Journal of Jilin University (Information Sci-ence Edition), 2015, 33(5):516-523. | |
[6] |
LIU Y J, ZHANG J K, YAN W J, et al. A main directional mean optical flow feature for spontaneous micro-expression recognition[J]. IEEE Transactions on Affective Computing, 2016, 7(4):299-310.
DOI URL |
[7] |
BEN X Y, ZHANG P, YAN R, et al. Gait recognition and micro-expression recognition based on maximum margin pro-jection with tensor representation[J]. Neural Computing and Applications, 2016, 27(8):2629-2646.
DOI URL |
[8] |
LIONG S T, GAN Y S, YAU W C, et al. OFF-ApexNet on micro-expression recognition system[J]. Signal Processing: Image Communication, 2018, 74:129-139.
DOI URL |
[9] | 刘汝涵, 徐丹. 视频放大和深度学习在微表情识别任务上的应用[J]. 计算机辅助设计与图形学学报, 2019, 31(9):1535-1541. |
LIU R H, XU D. Video amplification and deep learning in micro-expression recognition[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(9):1535-1541. | |
[10] | RATHI P, SHARMA R, SINGAL P, et al. Micro-expression recognition using 3D-CNN layering[M]// AI-Powered IoT for COVID-19. Boca Raton: CRC Press, 2020. |
[11] |
LI J, WANG Y, SEE J, et al. Micro-expression recognition based on 3D flow convolutional neural network[J]. Pattern Analysis and Applications, 2019, 22(4):1331-1339.
DOI URL |
[12] | REDDY S P T, KARRI S T, DUBEY S R, et al. Spon-taneous facial micro-expression recognition using 3D spatio-temporal convolutional neural networks[C]// Proceedings of the 2019 International Joint Conference on Neural Networks, Budapest, Jul 14-19, 2019. Piscataway: IEEE, 2019: 1-8. |
[13] | JIA X T, BEN X Y, YUAN H, et al. Macro-to-micro trans-formation model for micro-expression recognition[J]. Jour-nal of Computational Science, 2018, 25:289-297. |
[14] | XIA B, WANG W K, WANG S F, et al. Learning from macro-expression: a micro-expression recognition frame-work[C]// Proceedings of the 28th ACM International Con-ference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 2936-2944. |
[15] | ZHANG Y, XIANG T, HOSPEDALES T M, et al. Deep mutual learning[C]// Proceedings of the 2018 IEEE Con-ference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 4320-4328. |
[16] | TRAN D, BOURDEY L D, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]// Proceedings of the 2015 IEEE International Confe-rence on Computer Vision, Santiago, Dec 7-13, 2015. Was-hington: IEEE Computer Society, 2015: 4489-4497. |
[17] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethin-king the inception architecture for computer vision[C]// Pro-ceedings of the 2016 IEEE Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 2818-2826. |
[18] |
YAN W J, LI X B, WANG S J, et al. CASME II: an improved spontaneous micro-expression database and the baseline evaluation[J]. PLoS One, 2014, 9(1):e86041.
DOI URL |
[19] | LI X B, PFISTER T, HUANG X H, et al. A spontaneous micro-expression database: inducement, collection and base-line[C]// Proceedings of the 10th IEEE International Con-ference and Workshops on Automatic Face and Gesture Re-cognition, Shanghai, Apr 22-26, 2013. Washington: IEEE Computer Society, 2013: 1-6. |
[20] | ZHAO G Y, PIETIKÄINEN M. Dynamic texture reco-gnition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Ana-lysis and Machine Intelligence, 2007, 29(6):915-928. |
[21] | QUANG N V, CHUN J, TOKUYAMA T. CapsuleNet for micro-expression recognition[C]// Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Ges-ture Recognition, Lille, May 14-18, 2019. Piscataway: IEEE, 2019: 1-7. |
[22] | TAKALKAR M A, XU M. Image based facial micro-expression recognition using deep learning on small data-sets[C]// Proceedings of the 2017 International Conference on Digital Image Computing: Techniques and Applications, Sydney, Nov 29-Dec 1, 2017. Piscataway: IEEE, 2017: 1-7. |
[23] | HU C L, JIANG D B, ZOU H T, et al. Multi-task micro-expression recognition combining deep and handcrafted features[C]// Proceedings of the 24th International Confe-rence on Pattern Recognition, Beijing, Aug 20-24, 2018. Washington: IEEE Computer Society, 2018: 946-951. |
[24] | LIU Y C, DU H M, ZHENG L, et al. A neural micro-expression recognizer[C]// Proceedings of the 14th IEEE In-ternational Conference on Automatic Face & Gesture Reco-gnition, Lille, May 14-18, 2019. Piscataway: IEEE, 2019: 1-4. |
[25] | YU J H, ZHANG C Y, SONG Y, et al. ICE-GAN: identity-aware and capsule-enhanced GAN for micro-expression reco-gnition and synjournal[J]. arXiv: 2005. 04370v2, 2020. |
[26] | ZHOU L, MAO Q R, XUE L Y. Dual-inception network for crossdatabase microexpression recognition[C]// Proceedings of the 14th IEEE International Conference on Automatic Face & Gesture Recognition, Lille, May 14-18, 2019. Piscataway: IEEE, 2019: 1-5. |
[27] | XIA Z Q, HONG X P, GAO X Y, et al. Corrections to “spatiotemporal recurrent convolutional networks for re-cognizing spontaneous micro-expressions”[J]. IEEE Tran-sactions on Multimedia, 2020, 22(4):1111. |
[28] |
XIA Z Q, PENG W, KHOR H Q, et al. Revealing the invisible with model and data shrinking for composite-database micro-expression recognition[J]. IEEE Transactions on Image Processing, 2020, 29:8590-8605.
DOI URL |
[1] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[2] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[3] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[4] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[5] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[6] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[7] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[8] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[9] | ZHONG Mengyuan, JIANG Lin. Review of Super-Resolution Image Reconstruction Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990. |
[10] | XU Jia, WEI Tingting, YU Ge, HUANG Xinyue, LYU Pin. Review of Question Difficulty Evaluation Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 734-759. |
[11] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[12] | LIU Liping, SUN Jian, GAO Shiyan. Overview of Blind Deblurring Methods for Single Image [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 552-564. |
[13] | LIU Ying, GUO Yingying, FANG Jie, FAN Jiulun, HAO Yu, LIU Jiming. Survey of Research on Deep Learning Image-Text Cross-Modal Retrieval [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 489-511. |
[14] | MA Jinlin, ZHANG Yu, MA Ziping, MAO Kaiji. Research Progress of Lightweight Neural Network Convolution Design [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 512-528. |
[15] | WU Kaijun, HUANG Tao, WANG Dicong, BAI Chenshuai, TAO Xiaomiao. Research Progress of Video Anomaly Detection Technology [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 529-540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/