Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (8): 2140-2155.DOI: 10.3778/j.issn.1673-9418.2305058
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
WANG Yonggui, CHEN Shuming, LIU Yihai, LAI Zhenxiang
Online:
2024-08-01
Published:
2024-07-29
王永贵,陈书铭,刘义海,赖贞祥
WANG Yonggui, CHEN Shuming, LIU Yihai, LAI Zhenxiang. Knowledge-aware Recommendation Algorithm Combining Hypergraph Contrast Learning and Relational Clustering[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2140-2155.
王永贵, 陈书铭, 刘义海, 赖贞祥. 结合超图对比学习和关系聚类的知识感知推荐算法[J]. 计算机科学与探索, 2024, 18(8): 2140-2155.
[1] GUO Q, ZHUANG F, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8): 3549-3568. [2] LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the ACM Web Conference 2022, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 2320-2329. [3] ZHOU X, SUN A, LIU Y, et al. SelfCF: a simple framework for self-supervised collaborative filtering[J]. ACM Transactions on Recommender Systems, 2023, 1(2): 1-25. [4] YANG Y, HUANG C, XIA L, et al. Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1434-1443. [5] SHAH A, MOLOKWU B, KOBTI Z. HTransE: hybrid translation-based embedding for knowledge graphs[C]// Proceedings of the 2022 IEEE International Conference on Knowledge Graph, Orlando, Nov 30-Dec 1, 2022. Piscataway: IEEE, 2022: 233-240. [6] REN L J, LU J, GUO W. Multi-source knowledge embedding research of knowledge graph[C]//Proceedings of the 3rd International Conference on Circuits, Systems and Devices, Chengdu, Aug 23-25, 2019. Piscataway: IEEE, 2019: 163-166. [7] HUANG X, ZHANG J Y, LI D C, et al. Knowledge graph embedding based question answering[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 105-113. [8] ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 353-362. [9] WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426. [10] WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313. [11] DU Y, ZHU X, CHEN L, et al. HAKG: hierarchy-aware knowledge gated network for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1390-1400. [12] LU L, WANG B, ZHANG Z, et al. VRKG4Rec: virtual relational knowledge graph for recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining, Singapore, Feb 27-Mar 3, 2023. New York: ACM, 2023: 526-534. [13] XIA L, HUANG C, HUANG C, et al. Automated self-supervised learning for recommendation[C]//Proceedings of the ACM Web Conference 2023, Austin, Apr 30-May 4, 2023. New York: ACM, 2023: 992-1002. [14] WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 726-735. [15] YAO T, YI X, CHENG D Z, et al. Self-supervised learning for large-scale item recommendations[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Nov 1-5, 2021. New York: ACM, 2021: 4321-4330. [16] ZOU D, WEI W, MAO X L, et al. Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1358-1368. [17] CAI X, HUANG C, XIA L, et al. LightGCL: simple yet effective graph contrastive learning for recommendation [EB/OL]. [2023-04-12]. https://arxiv.org/abs/2302.08191. [18] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 639-648. [19] WANG J, DING K, HONG L, et al. Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 1101-1110. [20] JI S, FENG Y, JI R, et al. Dual channel hypergraph collaborative filtering[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020. New York: ACM, 2020: 2020-2029. [21] XIA L, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 70-79. [22] RUSCH T K, BRONSTEIN M M, MISHRA S. A survey on oversmoothing in graph neural networks[EB/OL]. [2023-04-12]. https://arxiv.org/abs/2303.10993. [23] FENG Y, YOU H, ZHANG Z, et al. Hypergraph neural networks[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3558-3565. [24] OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. [2023-04-12]. https://arxiv.org/abs/1807.03748. [25] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 950-958. [26] WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation[C]//Proceedings of the 2021 Web Conference, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 878-887. [27] WANG Z, LIN G, TAN H, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. Nwe York: ACM, 2020: 219-228. [28] ZOU D, WEI W, WANG Z, et al. Improving knowledge-aware recommendation with multi-level interactive contrastive learning[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, Oct 17-21, 2022. New York: ACM, 2022: 2817-2826. [29] DATTA L. A survey on activation functions and their relation with Xavier and He normal initialization[EB/OL]. [2023-04-12]. https://arxiv.org/abs/2004.06632. [30] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[EB/OL]. [2023-04-12]. https://arxiv.org/abs/1205.2618. |
[1] | WANG Yonggui, LIU Danni. Cross-Domain Recommendation Algorithm Combining Multi-personalized Bridges and Self-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1792-1805. |
[2] | HAN Han, HUANG Xunhua, CHANG Huihui, FAN Haoyi, CHEN Peng, CHEN Jijia. Review of Self-supervised Learning Methods in Field of ECG [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1683-1704. |
[3] | FENG Jun, CHANG Yanghong, LU Jiamin, TANG Hailin, LYU Zhipeng, QIU Yuchun. Construction and Application of Knowledge Graph for Water Engineering Scheduling Based on Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1637-1647. |
[4] | LI Xiangxia, CHEN Kairui, LI Bin. Generative Adversarial Network Recommendation System with Multi-dimensional Gradient Feedback Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1579-1589. |
[5] | QIAO Zifeng, QIN Hongchao, HU Jingjing, LI Ronghua, WANG Guoren. Knowledge Graph Completion Algorithm with Multi-view Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1001-1009. |
[6] | ZHANG Yusong, XIA Hongbin, LIU Yuan. Self-supervised Hybrid Graph Neural Network for Session-Based Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1021-1031. |
[7] | LIN Sui, LU Chaohai, JIANG Wenchao, LIN Xiaoshan, ZHOU Weilin. Few-Shot Knowledge Graph Completion Based on Selective Attention [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 646-658. |
[8] | ZHANG Xishuo, LIU Lin, WANG Hailong, SU Guibin, LIU Jing. Survey of Entity Relationship Extraction Methods in Knowledge Graphs [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 574-596. |
[9] | CHANG Yu, WANG Gang, ZHU Peng, KONG Lingfei, HE Jingheng. Survey of Research on Construction Method of Industry Internet Security Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 279-300. |
[10] | CHEN Jiaxing, HU Zhiwei, LI Ru, HAN Xiaoqi, LU Jiang, YAN Zhichao. Knowledge Graph Link Prediction Fusing Description and Structural Features [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 486-495. |
[11] | WEN Minwei, MEI Hongyan, YUAN Fengyuan, ZHANG Xiaoyu, ZHANG Xing. Survey of Multi-task Recommendation Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 363-377. |
[12] | JIANG Hongxun, ZHANG Lin, SUN Caihong. Knowledge Graph-Based Video Classification Algorithm for Film and Television Drama [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 161-174. |
[13] | CUI Huanqing, SONG Weiqing, YANG Junzhu. Knowledge Ripple Graph Convolutional Network for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2209-2218. |
[14] | QIAN Fulan, WANG Wenxue, ZHENG Wenjie, CHEN Jie, ZHAO Shu. Reserved Hierarchy-Based Knowledge Graph Embedding for Link Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2174-2183. |
[15] | FENG Han, YI Huawei, LI Xiaohui, LI Rui. Review of Privacy-Preserving Research in Recommendation Systems [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1814-1832. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 235
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/