[1] WAN Q, HE X N, WANG X, et al. Cross pairwise ranking for unbiased item recommendation[C]//Proceedings of the ACM Web Conference 2022, Apr 25-29, 2022. New York: ACM, 2022: 2370-2378.
[2] 冯晗, 伊华伟, 李晓会, 等. 推荐系统的隐私保护研究综述[J]. 计算机科学与探索, 2023, 17(8): 1814-1832.
FENG H, YI H W, LI X H, et al. Review of privacy-preserving research in recommendation systems[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1814-1832.
[3] GAO C, HUANG C, LIN D S, et al. DPLCF: differentially private local collaborative filtering[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jun 25-30, 2020. New York: ACM, 2020: 961-970.
[4] MINTO L, HALLER M, LIVSHITS B, et al. Stronger privacy for federated collaborative filtering with implicit feedback[C]//Proceedings of the 15th ACM Conference on Recommender Systems, Sep 1, 2021. New York: ACM, 2021: 342-350.
[5] CAO Y Z, F Y J. Towards making systems forget with machine unlearning[C]//Proceedings of the 2015 IEEE Symposium on Security and Privacy, May 17-21, 2015. Piscataway: IEEE, 2015: 463-480.
[6] BOURTOULE L, CHANDRASEKARAN V, CHOQUETTE-CHOO C A, et al. Machine unlearning[C]//Proceedings of the 2021 IEEE Symposium on Security and Privacy, May 24-27, 2021. Piscataway: IEEE, 2021: 141-159.
[7] CHEN M, ZHANG Z K, WANG T H, et al. Graph unlearning[C]//Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Nov 2022. New York: ACM, 2022: 499-513.
[8] CHEN C, SUN F, ZHANG M, et al. Recommendation unlearning[C]//Proceedings of the ACM Web Conference 2022, Apr 25-29, 2022. New York: ACM, 2022: 2768-2777.
[9] KAPOOR A, SINGHAL A. A comparative study of K-means, K-means++ and fuzzy C-means clustering algorithms[C]//Proceedings of the 2017 3rd International Conference on Computational Intelligence & Communication Technology, Mar 9-10, 2017. Piscataway: IEEE, 2017: 1-6.
[10] WEN H, YANG L, DEBORAH E. Leveraging post-click feedback for content recommendations[C]//Proceedings of the 13th ACM Conference on Recommender Systems, Sep 16, 2019. New York: ACM, 2019: 278-286.
[11] TIAN C X, XIE Y X, LI Y L, et al. Learning to denoise unreliable interactions for graph collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2022. New York: ACM, 2022: 122-132.
[12] GAO Y J, DU Y T, HU Y J, et al. Self-guided learning to denoise for robust recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2022. New York: ACM, 2022: 1412-1422.
[13] CHEN H Y, LIN Y S, PAN M H, et al. Denoising self-attentive sequential recommendation[C]//Proceedings of the 16th ACM Conference on Recommender Systems, Sep 18-23, 2022. New York: ACM, 2022: 92-101.
[14] WANG W J, FENG F L, HE X N, et al. Denoising implicit feedback for recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Mar 8-12, 2021. New York: ACM, 2021: 373-381.
[15] LU H Y, ZHANG M, MA W Z, et al. Effects of user negative experience in mobile news streaming[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 21-25, 2019. New York: ACM, 2019: 705-714.
[16] JAWAHEER G, SZOMSZOR M, KOSTKOVA P. Comparison of implicit and explicit feedback from an online music recommendation service[C]//Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems. New York: ACM, 2010: 47-51.
[17] XU M, SUN J, YANG X, et al. Netflix and forget: efficient and exact machine unlearning from bi-linear recommendations[EB/OL]. [2023-10-23]. https://arxiv.org/abs/2302.06676.
[18] ZHANG C, CHEN R, ZHAO X Y, et al. Denoising and prompt-tuning for multi-behavior recommendation[C]//Proceedings of the ACM Web Conference 2023, Apr 25-29, 2023. New York: ACM, 2023: 1355-1363.
[19] LEE S. Fuzzy clustering with optimization for collaborative filtering-based recommender systems[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(9): 4189-4206.
[20] DUAN L, WANG W P, HAN B J. A hybrid recommendation system based on fuzzy C-means clustering and supervised learning[J]. KSII Transactions on Internet and Information Systems, 2021, 15(7): 2399-2413.
[21] HU Y J, KOREN Y, VOLINSKY C. Collaborative filtering for implicit feedback datasets[C]//Proceedings of the 2008 8th IEEE International Conference on Data Mining, Dec 15-19, 2008. Piscataway: IEEE, 2008: 263-272.
[22] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Jun 18-21, 2009. Arlington: AUAI Press, 2009: 452-461.
[23] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jun 25-30, 2020. New York: ACM, 2020: 639-648.
[24] MATUSZYK P, VINAGRE J, SPILIOPOULOU M, et al. Forgetting methods for incremental matrix factorization in recommender systems[C]//Proceedings of the 30th Annual ACM Symposium on Applied Computing, Apr 13-17, 2015. New York: ACM, 2023: 947-953.
[25] LI Y, CHEN C, ZHENG X, et al. Making recommender systems forget: learning and unlearning for erasable recommendation[J]. Knowledge-Based Systems, 2024, 283: 111124.
[26] LI Y, CHEN C, ZHANG Y, et al. UltraRE: enhancing RecEraser for recommendation Unlearning via error decomposition[C]//Advances in Neural Information Processing Systems 36, New Orleans, Dec 10-16, 2023.
[27] LIU B L, BAI B, XIE W, et al. Task-optimized user clustering based on mobile APP usage for cold-start recommendations[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug 14-18, 2022. New York: ACM, 2022: 3347-3356.
[28] FARAHANI M G, TORKESTANI J A, RAHMANI M. Adap-tive personalized recommender system using learning auto-mata and items clustering[J]. Information Systems, 2022, 105: 106101978.
[29] 王永贵, 李昕. 融合狼群算法和模糊聚类的混合推荐算法[J]. 计算机工程与应用, 2022, 58(5): 104-111.
WANG Y G, LI X. Hybrid recommendation algorithm combining wolf colony algorithm and fuzzy clustering[J]. Computer Engineering and Applications, 2022, 58(5): 104-111.
[30] LAVEE G, KOENIGSTEIN N, BARKAN O. When actions speak louder than clicks: a combined model of purchase probability and long-term customer satisfaction[C]//Procee-dings of the 13th ACM Conference on Recommender Systems, Sep 16, 2019. New York: ACM, 2019: 287-295.
[31] 张卫国, 袁炜轩, 周熙然. 融合深度去噪自编码器和注意力机制的推荐算法[J]. 计算机应用与软件, 2023, 40(8): 283-290.
ZHANG W G, YUAN W X, ZHOU X R. Recommendation algorithm combining deep denoising autoencoder and attention mechanism[J]. Computer Applications and Software, 2023, 40(8): 283-290.
[32] MCAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Aug 9-13, 2015. New York: ACM, 2015: 43-52. |