Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (10): 2594-2615.DOI: 10.3778/j.issn.1673-9418.2407038
• Special Issue on Constructions and Applications of Large Language Models in Specific Domains • Previous Articles Next Articles
LIANG Jia, ZHANG Liping, YAN Sheng, ZHAO Yubo, ZHANG Yawen
Online:
2024-10-01
Published:
2024-09-29
梁佳,张丽萍,闫盛,赵宇博,张雅雯
LIANG Jia, ZHANG Liping, YAN Sheng, ZHAO Yubo, ZHANG Yawen. Research Progress of Named Entity Recognition Based on Large Language Model[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2594-2615.
梁佳, 张丽萍, 闫盛, 赵宇博, 张雅雯. 基于大语言模型的命名实体识别研究进展[J]. 计算机科学与探索, 2024, 18(10): 2594-2615.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2407038
[1] XU D, CHEN W, PENG W, et al. Large language models for generative information extraction: a survey[EB/OL].[2024-05-23]. https://arxiv.org/abs/2312.17617. [2] SUN G, LIANG L, LI T, et al. Video question answering: a survey of models and datasets[J]. Mobile Networks and Applications, 2021, 26(5): 1904-1937. [3] CHAUHAN S, DANIEL P. A comprehensive survey on various fully automatic machine translation evaluation metrics[J]. Neural Processing Letters, 2023, 55(9): 12663-12717. [4] PENG C, XIA F, NASERIPARSA M, et al. Knowledge graphs: opportunities and challenges[J]. Artificial Intelligence Review, 2023, 56(11): 13071-13102. [5] 罗媛媛, 杨春明, 李波, 等. 融合机器阅读理解的中文医学命名实体识别方法[J]. 计算机科学, 2023, 50(9): 287-294. LUO Y Y, YANG C M, LI B, et al. Chinese medical named entity recognition method incorporating machine reading comprehension[J]. Computer Science, 2023, 50(9): 287-294. [6] WANG Z, ZHANG S, ZHAO Y, et al. Risk prediction and credibility detection of network public opinion using blockchain technology[J]. Technological Forecasting and Social Change, 2023, 187: 122177. [7] 陈光, 郭军. 大语言模型时代的人工智能: 技术内涵、行业应用与挑战[J/OL]. 北京邮电大学学报 [2024-05-23]. https:// doi.org/10.13190/j.jbupt.2024-035. CHEN G, GUO J. Artificial intelligence in the era of large language models: technical significance, industry applications and challenges[J/OL]. Journal of Beijing University of Posts and Telecommunications [2024-05-23]. https://doi.org/10.13190/j.jbupt.2024-035. [8] 孙凯丽, 罗旭东, 罗有容. 预训练语言模型的应用综述[J]. 计算机科学, 2023, 50(1): 176-184. SUN K L, LUO X D, LUO Y R. Survey of applications of pretrained language models[J]. Computer Science, 2023, 50 (1): 176-184. [9] 蔡睿, 葛军, 孙哲, 等. AI预训练大模型发展综述[J/OL]. 小型微型计算机系统 [2024-05-23]. http://kns.cnki.net/kcms/detail/21.1106.tp.20240510.1900.010.html. CAI R, GE J, SUN Z, et al. Overview of the development of AI pre-trained large models[J/OL]. Journal of Chinese Computer Systems [2024-05-23]. http://kns.cnki.net/kcms/detail/21.1106.tp.20240510.1900.010.html. [10] HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 87-110. [11] 鲁超峰, 陶冶, 文连庆, 等. 融合大语言模型和预训练模型的少量语料说话人-情感语音转换方法[J/OL]. 计算机应用 [2024-05-23]. http://kns.cnki.net/kcms/detail/51.1307.TP.20240328.2243.020.html. LU C F, TAO Y, WEN L Q, et al. Speaker-emotion voice conversion method with limited corpus based on large language model and pre-trained model[J/OL]. Computer Applications [2024-05-23]. http://kns.cnki.net/kcms/detail/51.1307.TP. 20240328.2243.020.html. [12] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2024-05-23]. https://arxiv.org/abs/1301.3781. [13] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-05-23]. https://arxiv.org/abs/1810.04805. [14] RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21: 1-67. [15] LEWIS M, LIU Y, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[EB/OL]. [2024-05-23]. https://arxiv.org/abs/1910.13461. [16] FLORIDI L, CHIRIATTI M. GPT-3: its nature, scope, limits, and consequences[J]. Minds and Machines, 2020, 30: 681-694. [17] SUN Y, WANG S, LI Y, et al. ERNIE 2.0: a continual pre-training framework for language understanding[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 8968-8975. [18] XIANG S, DONG F, XU S. A hybrid neural network based on XLNet for rumor detection[C]//Proceedings of the 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications. Piscataway: IEEE, 2022: 1207-1211. [19] MARCUS M, SANTORINI B, MARCINKIEWICZ M A. Building a large annotated corpus of English: the Penn Treebank[J]. Computational Linguistics, 1993, 19(2): 313-330. [20] ERXLEBEN F, GUNTHER M, KROTZSCH M, et al. Introducing wikidata to the linked data web[C]//Proceedings of the 13th International Semantic Web Conference, Riva del Garda, Oct 19-23, 2014. Cham: Springer, 2014: 50-65. [21] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9. [22] ZHU Y, KIROS R, ZEMEL R, et al. Aligning books and movies: towards story-like visual explanations by watching movies and reading books[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2015: 19-27. [23] DORDEVIC D, BOZIC V, THOMMES J, et al. Rethinking attention: exploring shallow feed-forward neural networks as an alternative to attention layers in transformers (student abstract)[C]//Proceedings of the 2024 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2024: 23477-23479. [24] 马昂, 于艳华, 杨胜利, 等. 基于强化学习的知识图谱综述[J]. 计算机研究与发展, 2022, 59(8): 1694-1722. MA A, YU Y H, YANG S L, et al. Survey of knowledge graph based on reinforcement learning[J]. Journal of Computer Research and Development, 2022, 59(8): 1694-1722. [25] 祁鹏年, 廖雨伦, 覃飙. 基于深度学习的中文命名实体识别研究综述[J]. 小型微型计算机系统, 2023, 44(9): 1857-1868. QI P N, LIAO Y L, QIN B. Survey on deep learning for Chinese named entity recognition[J]. Journal of Chinese Computer Systems, 2023, 44(9): 1857-1868. [26] ADAM L B, STEPHEN D P, VINCENT J D P. A maximum entropy approach to natural language processing[J]. Computational Linguistics, 1996, 22(1): 39-71. [27] HU W, TIAN G, KANG Y, et al. Dual sticky hierarchical Dirichlet process hidden Markov model and its application to natural language description of motions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(10): 2355-2373. [28] CHEN P H, LIN C J, SCHOLKOPF B. A tutorial on ν-support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005, 21: 111-136. [29] LEE C, HWANG Y, OH H, et al. Fine-grained named entity recognition using conditional random fields for question answering[C]//Proceedings of the 2006 Asia Information Retrieval Symposium. Berlin, Heidelberg: Springer, 2006: 581- 587. [30] WANG L, WANG X, LI T, et al. SAdaBoundNc: an adaptive subgradient online learning algorithm with logarithmic regret bounds[J]. Neural Computing and Applications, 2023, 35(11): 8051-8063. [31] KRUPKA G R. SRA: description of the SRA system as used for MUC-6[C]//Proceedings of the 6th Conference on Message Understanding, Columbia, Nov 6-8, 1995. Stroud-sburg: ACL, 1995: 221-235. [32] 王宁, 葛瑞芳, 苑春法, 等. 中文金融新闻中公司名的识别[J]. 中文信息学报, 2002, 16(2): 1-6. WANG N, GE R F, YUAN C F, et al. Company name identification in chinese financial domain[J]. Journal of Chinese Information Processing, 2002, 16(2): 1-6. [33] 张小衡, 王玲玲. 中文机构名称的识别与分析[J]. 中文信息学报, 1997(4): 22-33. ZHANG X H, WANG L L. Identification and analysis of Chinese organization and institution names[J]. Journal of Chinese Information Processing, 1997(4): 22-33. [34] BORTHWICK A, STERLING J, AGICHTEIN E, et al. NYU: description of the MENE named entity system as used in MUC-7[C]//Proceedings of the 7th Message Understanding Conference, Virginia, Apr 29-May 1, 1998. Strouds-burg: ACL, 1998: 1-7. [35] FU G, LUKE K K. Chinese named entity recognition using lexicalized HMMs[J]. ACM SIGKDD Explorations Newsletter, 2005, 7(1): 19-25. [36] 张华平, 刘群. 基于角色标注的中国人名自动识别研究[J]. 计算机学报, 2004, 27(1): 85-91. ZHANG H P, LIU Q. Automatic recognition of Chinese personal name based on role tagging[J]. Chinese Journal of Computers, 2004, 27(1): 85-91. [37] ISOZAKI H, KAZAWA H. Efficient support vector classifiers for named entity recognition[C]//Proceedings of the 19th International Conference on Computational Linguistics, Taipei, China, Aug 24-Sep 1, 2002. Stroudsburg: ACL,2002: 1-7. [38] MCCALLUM A, LI W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons[C]//Proceedings of the 7th Conference on Natural Language Learning, Edmonton, May 31-Jun 1, 2003. Stroudsburg: ACL, 2003: 188-191. [39] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [40] LI J, SUN A X, HAN J L, et al. A survey on deep learning for named entity recognition[J]. IEEE Transactions on Know-ledge and Data Engineering, 2022, 34(1): 50-70. [41] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493-2537. [42] YAO L, LIU H, LIU Y, et al. Biomedical named entity recognition based on deep neutral network[J]. International Journal of Hybrid Information Technology, 2015, 8(8): 279-288. [43] STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 2670-2680. [44] WU Y H, JIANG M, LEI J B, et al. Named entity recognition in Chinese clinical text using deep neural network[C]//Proceedings of the 15th World Congress on Health and Biomedical Informatics, S?o Paulo, Aug 19-23, 2015: 624-628. [45] WU F Z, LIU J X, WU C H, et al. Neural Chinese named entity recognition via CNN-LSTM-CRF and joint training with word segmentation[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3342-3348. [46] GUI T, MA R T, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4982-4988. [47] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2024-05-23]. https://arxiv.org/abs/1508.01991. [48] XU Y X, HUANG H Y, FENG C, et al. A supervised multihead self-attention network for nested named entity recognition[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9,2021. Menlo Park: AAAI, 2021: 14185-14193. [49] ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1554-1564. [50] LIU W, XU T G, XU Q H, et al. An encoding strategy based word-character LSTM for Chinese NER[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019.Stroudsburg: ACL, 2019: 2379-2389. [51] MA R T, PENG M L, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 5951-5960. [52] CETOLI A, BRAGAGLIA S, O??HARNEY A D, et al. Graph convolutional networks for named entity recognition[C]//Proceedings of the 16th International Workshop on Treebanks and Linguistic Theories, Prague, Jan 23-24, 2018. Stroudsburg: ACL, 2018: 37-45. [53] SUI D, CHEN Y, LIU K, et al. Leverage lexical knowlege for Chinese named entity recognition via collaborative graph network[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hongkong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3821-3831. [54] GUI T, ZOU Y C, ZHANG Q, et al. A lexicon-based graph neural network for Chinese NER[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hongkong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 1040-1050. [55] TANG Z, WAN B, YANG L. Word-character graph convolution network for Chinese named entity recognition[J].IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 1520-1532. [56] KOROTEEV M V. BERT: a review of applications in natural language processing and understanding[EB/OL]. [2024-05-23]. https://arxiv.org/abs/2103.11943. [57] 陈娜, 孙艳秋, 燕燕. 结合注意力机制的BERT-BiGRU-CRF中文电子病历命名实体识别[J]. 小型微型计算机系统, 2023, 44(8): 1680-1685. CHEN N, SUN Y Q, YAN Y. Named entity recognition for Chinese electronic medical record based on BERT-BIGRU-CRF and attention mechanism[J]. Journal of Chinese Computer Systems, 2023, 44(8): 1680-1685. [58] 陈观林, 程钊, 邹凌, 等. 基于BERT的危险化学品命名实体识别模型[J]. 广西科学, 2023, 30(1): 43-51. CHEN G L, CHENG Z, ZOU L, et al. Identification model of named entities for hazardous chemicals based on BERT[J]. Guangxi Science, 2023, 30(1): 43-51. [59] 马英. 《危险化学品目录(2015版)》即将实施[J]. 石油化工, 2015, 44(4): 488. MA Y. Inventory of hazardous chemicals (2015)[J]. Petrochemical Technology, 2015, 44(4): 488. [60] 杨盈, 邱芹军, 谢忠, 等. 人在回路学习增强的地理命名实体识别[J]. 测绘通报, 2023(8): 155-160. YANG Y, QIU Q J, XIE Z, et al. Geographical named entity recognition based on human-in-the-loop learning enhancement[J]. Bulletin of Surveying and Mapping, 2023(8): 155-160. [61] 李代祎, 张笑文, 严丽. 一种基于异构图网络的多模态实体识别方法[J/OL]. 小型微型计算机系统 [2024-05-23]. http://kns.cnki.net/kcms/detail/21.1106.TP.20230711.1048.002. html. LI D Y, ZHANG X W, YAN L. A multimodal name entity recognition method based on heterogeneous graph network [J/OL]. Journal of Chinese Computer Systems [2024-05-23]. http://kns.cnki.net/kcms/detail/21.1106.TP.20230711.1048.002.html. [62] AGRAWAL A, TRIPATHI S, VARDHAN M, et al. BERT-based transfer-learning approach for nested named-entity recognition using joint labeling[J]. Applied Sciences, 2022, 12(3): 976. [63] LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. [2024-05-23].https://arxiv.org/abs/1907.11692. [64] LAN Z, CHEN M, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[C]//Proceedings of the 2020 International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020. [65] JIAO X, YIN Y, SHANG L, et al. TinyBERT: distilling BERT for natural language understanding[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 4163-4174. [66] JOSHI M, CHEN D, LIU Y, et al. SpanBERT: improving pre-training by representing and predicting spans[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 64-77. [67] ZHANG Z, HAN X, LIU Z, et al. ERNIE: enhanced language representation with informative entities[EB/OL]. [2024- 05-23]. https://arxiv.org/abs/1905.07129. [68] 贾李睿智, 刘胜全, 刘源, 等. 基于分层ERNIE模型的中文嵌套命名实体识别[J]. 东北师大学报(自然科学版), 2023, 55(1): 97-103. JIALI R Z, LIU S Q, LIU Y, et al. Chinese nested named entity recognition based on layered ERNIE model[J]. Journal of North east Normal University (Natural Science Edition), 2023, 55(1): 97-103. [69] 王刘坤, 李功权. 基于GeoERNIE-BiLSTM-Attention-CRF模型的地质命名实体识别[J]. 地质科学, 2023, 58(3): 1164-1177. WANG L K, LI G Q. Geological named entity recognition based on GeoERNIE-BiLSTM-Attention-CRF model[J]. Chinese Journal of Geology, 2023, 58(3): 1164-1177. [70] 罗峦, 夏骄雄. 融合ERNIE与改进Transformer的中文NER模型[J]. 计算机技术与发展, 2022, 32(10): 120-125. LUO L, XIA J X. Research on Chinese named entity recognition combining ERNIE with improved Transformer[J]. Computer Technology and Development, 2022, 32(10): 120-125. [71] WANG Y, SUN Y, MA Z, et al. An ERNIE-based joint model for Chinese named entity recognition[J]. Applied Sciences, 2020, 10(16): 5711. [72] LIU X, ZHENG Y, DU Z, et al. GPT understands, too[J/OL]. AI Open [2024-05-23]. https://doi.org/10.1016/j.aiopen.2023. 08.012. [73] RADFORD A. Improving language understanding by generative pre-training[EB/OL]. [2024-05-23]. https://cdn.openai.com/research-covers/language-unsupervised/language_ understanding_paper.pdf. [74] QU Y, LIU P, SONG W, et al. A text generation and prediction system: pre-training on new corpora using BERT and GPT-2[C]//Proceedings of the 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication. Piscataway: IEEE, 2020: 323-326. [75] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 1877-1901. [76] LI J, ZHOU Y, JIANG X, et al. Are synthetic clinical notes useful for real natural language processing tasks: a case study on clinical entity recognition[J]. Journal of the American Medical Informatics Association, 2021, 28(10): 2193-2201. [77] 鲍彤, 章成志. ChatGPT中文信息抽取能力测评——以三种典型的抽取任务为例[J]. 数据分析与知识发现, 2023, 7(9): 1-11. BAO T, ZHANG C Z. Extracting Chinese information with ChatGPT: an empirical study by three typical tasks[J]. Data Analysis and Knowledge Discovery, 2023, 7(9): 1-11. [78] HU Y, MAI G, CUNDY C, et al. Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages[J]. International Journal of Geographical Information Science, 2023, 37(11): 2289-2318. [79] HU Y, CHEN Q, DU J, et al. Improving large language models for clinical named entity recognition via prompt engineering[J/OL]. Journal of the American Medical Informatics Association [2024-05-23]. https://doi.org/10.1093/jamia/ocad259. [80] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[EB/OL].[2024-05-23]. https://arxiv.org/abs/2302.13971. [81] TOUVRON H, MARTIN L, STONE K, et al. LLaMA 2: open foundation and fine-tuned chat models[EB/OL]. [2024- 05-23]. https://arxiv.org/abs/2307.09288. [82] YOON J, GUPTA A, ANUMANCHIPALLI G. Is bigger edit batch size always better?—an empirical study on model editing with LLaMA-3[EB/OL]. [2024-05-23]. https://arxiv.org/abs/2405.00664. [83] KELOTH V K, HU Y, XIE Q, et al. Advancing entity recognition in biomedicine via instruction tuning of large language models[J]. Bioinformatics, 2024, 40(4). [84] DE-FITERO-DOMINGUEZ D, GARCIA-LOPEZ E, GARCIA-CABOT A, et al. Distractor generation through text-to-text transformer models[J]. IEEE Access, 2024, 12: 25580-25589. [85] PIRES T, SCHLINGER E, GARRETTE D. How multilingual is multilingual BERT[EB/OL]. [2024-05-23]. https://arxiv.org/abs/1906.01502. [86] SCHWENK H, LI X. A corpus for multilingual document classification in eight languages[EB/OL]. [2024-05-23]. https://arxiv.org/abs/1805.09821. [87] CHOURE A A, ADHAO R B, PACHGHARE V K. NER in Hindi language using transformer model: XLM-RoBERTa[C]//Proceedings of the 2022 IEEE International Conference on Blockchain and Distributed Systems Security. Piscataway: IEEE, 2022: 1-5. [88] LIU C L, HSU T Y, CHUANG Y S, et al. A study of cross-lingual ability and language-specific information in multilingual BERT[EB/OL]. [2024-05-23]. https://arxiv.org/abs/2004.09205. [89] 徐月梅, 曹晗, 王文清, 等. 跨语言情感分析研究综述[J]. 数据分析与知识发现, 2023, 7(1): 1-21. XU Y M, CAO H, WANG W Q, et al. Cross-lingual sentiment analysis: a survey[J]. Data Analysis and Knowledge Discovery, 2023, 7(1): 1-21. [90] MOEZZI S A R, GHAEDI A, RAHMANIAN M, et al. Application of deep learning in generating structured radiology reports: a transformer-based technique[J]. Journal of Digital Imaging, 2023, 36(1): 80-90. [91] JI L, YAN D, CHENG Z, et al. Improving unified named entity recognition by incorporating mention relevance[J]. Neural Computing and Applications, 2023, 35(30): 22223-22234. [92] CUI L, WU Y, LIU J, et al. Template-based named entity recognition using BART[EB/OL]. [2024-05-23]. https://arxiv.org/abs/2106.01760. [93] DU H, XU J, DU Z, et al. MF-MNER: multi-models fusion for MNER in Chinese clinical electronic medical records[J]. Interdisciplinary Sciences: Computational Life Sciences, 2024, 16: 489-502. [94] ANG Z, DAI Z, YANG Y, et al. XLNET: generalized autoregressive pretraining for language understanding[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 5754-5764. [95] 姚贵斌, 张起贵. 基于XLnet语言模型的中文命名实体识别[J]. 计算机工程与应用, 2021, 57(18): 156-162. YAO G B, ZHANG Q G. Chinese named entity recognition based on XLnet language model[J]. Computer Engineering and Applications, 2021, 57(18): 156-162. [96] 沈宙锋, 苏前敏, 郭晶磊. 基于XLNet-BiLSTM的中文电子病历命名实体识别方法[J]. 智能计算机与应用, 2021, 11(8): 97-102. SHEN Z F, SU Q M, GUO J L. Named entity recognition model of Chinese clinical electronic medical record based on XLNet-BiLSTM[J]. Intelligent Computer and Applications, 2021, 11(8): 97-102. [97] 陈明, 顾凡. 基于XLNet的农业命名实体识别方法[J]. 河北农业大学学报, 2023(4): 111-117. CHEN M, GU F. Agricultural named entity recognition method based on XLNet[J]. Journal of Hebei Agricultural University, 2023(4): 111-117. [98] YAN R, JIANG X, DANG D. Named entity recognition by using XLNet-BiLSTM-CRF[J]. Neural Processing Letters, 2021, 53(5): 3339-3356. [99] CHAI Z, JIN H, SHI S, et al. Noise reduction learning based on XLNet-CRF for biomedical named entity recognition[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 20(1): 595-605. [100] CHAI Z, JIN H, SHI S, et al. Hierarchical shared transfer learning for biomedical named entity recognition[J]. BMC Bioinformatics, 2022, 23: 1-14. |
[1] | LI Ziqi, SU Yuxuan, SUN Jun, ZHANG Yonghong, XIA Qingfeng, YIN Hefeng. Critical Review of Multi-focus Image Fusion Based on Deep Learning Method [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2276-2292. |
[2] | WANG Bing, XU Pei, ZHANG Xingpeng. Research on Fourier Augmented Unbiased Cross-Domain Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2436-2448. |
[3] | XU Zhihong, ZHANG Huibin, DONG Yongfeng, WANG Liqin, WANG Xu. Question Feature Enhanced Knowledge Tracing Model [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2466-2475. |
[4] | LIAN Zhe, YIN Yanjun, ZHI Min, XU Qiaozhi. Review of Differentiable Binarization Techniques for Text Detection in Natural Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2239-2260. |
[5] | FANG Boru, QIU Dawei, BAI Yang, LIU Jing. Review of Application of Surface Electromyography Signals in Muscle Fatigue Research [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2261-2275. |
[6] | XU Yanwei, LI Jun, DONG Yuanfang, ZHANG Xiaoli. Survey of Development of YOLO Object Detection Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2221-2238. |
[7] | XIANG Xiaowei, SHEN Yanguang, HU Minghao, YAN Tianwei, LUO Wei, LUO Zhunchen. Research on Science and Technology Policy and Regulation Q&A System Driven by Large Models [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2349-2360. |
[8] | LI Yifei, ZHANG Lingling, DONG Yuxuan, WANG Jiaxin, ZHONG Yujie, WEI Bifan. Large Language Model Augmentation and Feature Alignment Method for Few-Shot Continual Relation Extraction [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2326-2336. |
[9] | JI Guiyang, WANG Peiyan, YU Zhuo. Research on Knowledge Injection Method for Large Language Model Oriented to Process Specification Texts [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2361-2369. |
[10] | CHEN Longfei, GAO Xin, HOU Haotian, YE Chuyang, LIU Ya'ou, ZHANG Meihui. Application of Generative Large Language Models in Chinese Radiology Domain [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2337-2348. |
[11] | WANG Yousong, PEI Junpeng, LI Zenghui, WANG Wei. Review of Research on Deep Learning in Retinal Blood Vessel Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1960-1978. |
[12] | CHEN Fushi, SHEN Yao, ZHOU Chichun, DING Meng, LI Juhao, ZHAO Dongyue, LEI Yongsheng, PAN Yilun. Review of Unsupervised Learning Gait Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2014-2033. |
[13] | WU Tao, CAO Xinwen, XIAN Xingping, YUAN Lin, ZHANG Shu, CUI Canyixing, TIAN Kan. Advances of Adversarial Attacks and Robustness Evaluation for Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1935-1959. |
[14] | ZHU Yi, JU Chengcheng, HAO Guosheng. MOOCs Knowledge Concept Recommendation Model Based on PathSim [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2049-2064. |
[15] | LYU Haixiao, LI Yihong, ZHOU Xiaoyi. Few-Shot Named Entity Recognition with Prefix-Tuning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2180-2189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/