
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (10): 2635-2647.DOI: 10.3778/j.issn.1673-9418.2410024
• Frontiers·Surveys • Previous Articles Next Articles
XIAO Zeng, WANG Siriguleng, SI Qintu
Online:2025-10-01
Published:2025-09-30
肖增,王斯日古楞,斯琴图
XIAO Zeng, WANG Siriguleng, SI Qintu. Survey of Zero-Shot Multilingual Neural Machine Translation[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2635-2647.
肖增, 王斯日古楞, 斯琴图. 零样本多语言神经机器翻译综述[J]. 计算机科学与探索, 2025, 19(10): 2635-2647.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2410024
| [1] JOHNSON M, SCHUSTER M, LE Q V, et al. Google??s multilingual neural machine translation system: enabling zero-shot translation[J]. Transactions of the Association for Computational Linguistics, 2017, 5: 339-351. [2] CHEN Y, LIU Y, CHENG Y, et al. A teacher-student framework for zero-resource neural machine translation[EB/OL].[2024-08-10]. https://arxiv.org/abs/1705.00753. [3] CHEN Y, LIU Y, LI V. Zero-resource neural machine translation with multi-agent communication game[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 5086-5093. [4] CHENG Y, YANG Q, LIU Y, et al. Joint training for pivot-based neural machine translation[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 3974-3980. [5] DONG D X, WU H, HE W, et al. Multi-task learning for multiple language translation[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 1723-1732. [6] SALEH F, BUNTINE W, HAFFARI G, et al. Multilingual neural machine translation: can linguistic hierarchies help?[EB/OL]. [2024-08-10]. https://arxiv.org/abs/2110.07816. [7] NEUBIG G, HU J. Rapid adaptation of neural machine translation to new languages[EB/OL]. [2024-08-10]. https://arxiv.org/abs/1808.04189. [8] ZOPH B, KNIGHT K. Multi-source neural translation[EB/OL]. [2024-08-10]. https://arxiv.org/abs/1601.00710. [9] HUIDROM R, LEPAGE Y. Zero-shot translation among Indian languages[C]//Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages. Stroudsburg: ACL, 2020: 47-54. [10] HAN L, EROFEEV G, SOROKINA I, et al. Using massive multilingual pre-trained language models towards real zero-shot neural machine translation in clinical domain[EB/OL].[2024-08-12]. https://arxiv.org/abs/ 2210.06068. [11] LASKAR S R, KHILJI A F U R, PAKRAY P, et al. Zero-shot neural machine translation: Russian-Hindi@LoResMT 2020[C]//Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages. Stroudsburg: ACL, 2020: 38-42. [12] CHEN G, MA S, CHEN Y, et al. Zero-shot cross-lingual transfer of neural machine translation with multilingual pretrained encoders[EB/OL]. [2024-08-12]. https://arxiv.org/ abs/2104.08757. [13] CHEN G H, MA S M, CHEN Y, et al. Towards making the most of cross-lingual transfer for zero-shot neural machine translation[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 142-157. [14] SUN Z, WANG M, LI L. Multilingual translation via grafting pre-trained language models[EB/OL]. [2024-08-12]. https://arxiv.org/abs/2109.05256. [15] LIU Y. Multilingual denoising pre-training for neural machine translation[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2001. 08210. [16] LIN Z, PAN X, WANG M, et al. Pre-training multilingual neural machine translation by leveraging alignment information[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2010.03142. [17] TANG Y, TRAN C, LI X, et al. Multilingual translation with extensible multilingual pretraining and finetuning[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2008.00401. [18] HUDI F, QU Z, KAMIGAITO H, et al. Disentangling pretrained representation to leverage low-resource languages in multilingual machine translation[C]//Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, 2024: 4978-4989. [19] LIU Z, WINATA G I, FUNG P. Continual mixed-language pre-training for extremely low-resource neural machine translation[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2105. 03953. [20] PAN X, WANG M, WU L, et al. Contrastive learning for many-to-many multilingual neural machine translation[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2105.09501. [21] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186. [22] CONNEAU A. Unsupervised cross-lingual representation learning at scale[EB/OL]. [2024-08-12]. https://arxiv.org/abs/1911.02116. [23] LEWIS M. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[EB/OL]. [2024-08-11]. https://arxiv.org/abs/1910.13461. [24] VASWANI A. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [25] LIN Z, WU L, WANG M, et al. Learning language specific sub-network for multilingual machine translation[EB/OL].[2024-08-12]. https://arxiv.org/abs/2105.09259. [26] PIRES T P, SCHMIDT R M, LIAO Y H, et al. Learning language-specific layers for multilingual machine translation[EB/OL]. [2024-08-12]. https://arxiv.org/abs/2305.02665. [27] LIAO J W, SHI Y, GONG M, et al. Improving zero-shot neural machine translation on language-specific encoders-decoders[C]//Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway: IEEE, 2021: 1-8. [28] PURASON T, TATTAR A. Multilingual neural machine translation with the right amount of sharing[C]//Proceedings of the 23rd Annual Conference of the European Association for Machine Translation, 2022: 91-100. [29] LIU J P, HUANG K Y, LI J Y, et al. Adaptive token-level cross-lingual feature mixing for multilingual neural machine translation[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 10097-10113. [30] CHENG Y, BAPNA A, FIRAT O, et al. Multilingual mix: example interpolation improves multilingual neural machine translation[EB/OL]. [2024-08-10]. https://arxiv.org/abs/2203. 07627. [31] LI S J, WEI X P, ZHU S L, et al. MMNMT: modularizing multilingual neural machine translation with flexibly assembled MoE and dense blocks[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 4978-4990. [32] ESCOLANO C, COSTA-JUSSà M R, FONOLLOSA J A R. From bilingual to multilingual neural-based machine translation by incremental training[J]. Journal of the Association for Information Science and Technology, 2021, 72(2): 190-203. [33] LIU J P, HUANG K Y, YU H, et al. Continual learning for multilingual neural machine translation via dual importance-based model division[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 12011-12027. [34] HUANG K Y, LI P, LIU J P, et al. Learn and consolidate: continual adaptation for zero-shot and multilingual neural machine translation[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 13938-13951. [35] HUANG K, LI P, MA J, et al. Knowledge transfer in incremental learning for multilingual neural machine translation[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 15286-15304. [36] MULLOV C, PHAM N Q, WAIBEL A. Decoupled vocabulary learning enables zero-shot translation from unseen languages[EB/OL]. [2024-09-15]. https://arxiv.org/abs/2408.02290. [37] ZHANG B, WILLIAMS P, TITOV I, et al. Improving massively multilingual neural machine translation and zero-shot translation[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2004. 11867. [38] RAGANATO A, VáZQUEZ R, CREUTZ M, et al. An empirical investigation of word alignment supervision for zero-shot multilingual neural machine translation[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 8449-8456. [39] WANG W, JIAO W, WANG S, et al. Understanding and mitigating the uncertainty in zero-shot translation[EB/OL].[2024-08-11]. https://arxiv.org/abs/2205.10068. [40] QU Z, WATANABE T. Adapting to non-centered languages for zero-shot multilingual translation[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2209.04138. [41] YANG Y, ERIGUCHI A, MUZIO A, et al. Improving multilingual translation by representation and gradient regularization[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2109.04778. [42] CHEN L, MA S, ZHANG D, et al. On the off-target problem of zero-shot multilingual neural machine translation[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2305.10930. [43] SUN Z, LIU Y, MENG F, et al. LCS: a language converter strategy for zero-shot neural machine translation[EB/OL].[2024-08-11]. https://arxiv.org/abs/2406.02876. [44] GU J, WANG Y, CHO K, et al. Improved zero-shot neural machine translation via ignoring spurious correlations[EB/OL]. [2024-08-12]. https://arxiv.org/abs/1906.01181. [45] JI B J, ZHANG Z R, DUAN X Y, et al. Cross-lingual pre-training based transfer for zero-shot neural machine translation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 115-122. [46] AL-SHEDIVAT M, PARIKH A P. Consistency by agreement in zero-shot neural machine translation[EB/OL]. [2024-08-12]. https://arxiv.org/abs/1904.02338. [47] ARIVAZHAGAN N, BAPNA A, FIRAT O, et al. The missing ingredient in zero-shot neural machine translation[EB/OL].[2024-08-12]. https://arxiv.org/abs/1903.07091. [48] SESTORAIN L, CIARAMITA M, BUCK C, et al. Zero-shot dual machine translation[EB/OL]. [2024-08-12]. https://arxiv.org/abs/1805.10338. [49] HE D, XIA Y, QIN T, et al. Dual learning for machine translation[C]//Advances in Neural Information Processing Systems 29, 2016: 820-828. [50] FIRAT O, CHO K, BENGIO Y. Multi-way, multilingual neural machine translation with a shared attention mechanism[EB/OL]. [2024-08-10]. https://arxiv.org/abs/1601.01073. [51] LU Y, KEUNG P, LADHAK F, et al. A neural interlingua for multilingual machine translation[EB/OL]. [2024-08-10].https://arxiv.org/abs/1804.08198. [52] VAZQUEZ R, RAGANATO A, TIEDEMANN J, et al. Multilingual NMT with a language-independent attention bridge[EB/OL]. [2024-08-10]. https://arxiv.org/abs/1811.00498. [53] ESCOLANO C, COSTA-JUSSA M R, FONOLLOSA J A R, et al. Multilingual machine translation: closing the gap between shared and language-specific encoder-decoders[EB/OL]. [2024-08-15]. https://arxiv.org/abs/2004.06575. [54] ESCOLANO C, COSTA-JUSSA M R, FONOLLOSA J A R, et al. Training multilingual machine translation by alternately freezing language-specific encoders-decoders[EB/OL]. [2024-08-15]. https://arxiv.org/abs/2006.01594. [55] XU H, KIM Y J, SHARAF A, et al. A paradigm shift in machine translation: boosting translation performance of large language models[EB/OL]. [2024-08-11]. https://arxiv.org/abs/ 2309.11674. [56] MOSLEM Y, HAQUE R, WAY A. Fine-tuning large language models for adaptive machine translation[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2312.12740. [57] GAO P, HE Z, WU H, et al. Towards boosting many-to-many multilingual machine translation with large language models [EB/OL]. [2024-08-11]. https://arxiv.org/abs/2401.05861. [58] ZAN C, DING L, SHEN L, et al. Building accurate translation-tailored LLMs with language aware instruction tuning[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2403.14399. [59] HUANG Y, LI B, FENG X, et al. Aligning translation-specific understanding to general understanding in large language models[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2401.05072. [60] ZENG J L, MENG F D, YIN Y J, et al. Teaching large language models to translate with comparison[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(17): 19488-19496. [61] ALVES D M, GUERREIRO N M, ALVES J, et al. Steering large language models for machine translation with finetuning and in-context learning[EB/OL]. [2024-08-11]. https://arxiv.org/abs/2310.13448. |
| [1] | Anggeluma, WANG Siriguleng, SI Qintu. Overview of Research on Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2302-2318. |
| [2] | TIAN Chongteng, LIU Jing, WANG Xiaoyan, LI Ming. Review of Application of Large Language Models GPT in Medical Text [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2043-2056. |
| [3] | WANG Jintao, MENG Qixiang, GAO Zhilin, BU Fanliang. Research on Case Information Element Extraction Method Based on Instruction Fine-Tuning of Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2161-2173. |
| [4] | XIA Jianglan, LI Yanling, GE Fengpei. Survey of Entity Relation Extraction Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1681-1698. |
| [5] | SHI Zhenpu, LYU Xiao, DONG Yanru, LIU Jing, WANG Xiaoyan. Research on Development Status of Multimodal Knowledge Graph Fusion Technology in Medical Field [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1729-1746. |
| [6] | CUI Jian, WANG Yongwei, LI Feiyang, LI Qiang, SU Beirong, ZHANG Xiaojian. Chinese Text?Summarization Generation with Knowledge Distillation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1899-1908. |
| [7] | ZHOU Hanwen, DENG Zhaohong, ZHANG Wei. Global and Cross-Semantic Aggregation for Multi-level Enzyme Function Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1588-1597. |
| [8] | ZHANG Xin, SUN Jingchao. Review of False Information Detection Frameworks Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1414-1436. |
| [9] | XU Delong, LIN Min, WANG Yurong, ZHANG Shujun. Survey of NLP Data Augmentation Methods Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1395-1413. |
| [10] | HE Jing, SHEN Yang, XIE Runfeng. Research on Categorical Recognition and Optimization of Hallucination Phenomenon in Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1295-1301. |
| [11] | LI Juhao, SHI Lei, DING Meng, LEI Yongsheng, ZHAO Dongyue, CHEN Long. Social Media Text Stance Detection Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1302-1312. |
| [12] | LIU Hualing, ZHANG Zilong, PENG Hongshuai. Review of Enhancement Research for Closed-Source Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1141-1156. |
| [13] | WANG Xiaoyu, LI Xin, HU Mianning, XUE Di. CIL-LLM: Incremental Learning Framework Based on Large Language Models for Category Classification [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 374-384. |
| [14] | FENG Tuoyu, WANG Gangliang, QIAO Zijian, LI Weiping, ZHANG Yusong, GUO Qinglang. SbSER: Step-by-Step Enhanced Reasoning Framework for Large Language Model with External Subgraph Generation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 367-373. |
| [15] | XU Fengru, LI Bohan, XU Shuai. Research Progress on Sequence Recommendation Based on Deep Learning and Large Language Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 344-366. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/