[1] LIU B, ZHANG L. A survey of opinion mining and sentiment analysis[M]//Mining text data. Boston: Springer US, 2012: 415-463.
[2] DU J C, GUI L, HE Y L, et al. Convolution-based neural attention with applications to sentiment classification[J]. IEEE Access, 2019, 7: 27983-27992.
[3] HEMMATIAN F, SOHRABI M K. A survey on classification techniques for opinion mining and sentiment analysis[J]. Artificial Intelligence Review, 2019, 52(3): 1495-1545.
[4] WANG X D, TANG M W, YANG T, et al. A novel network with multiple attention mechanisms for aspect-level sentiment analysis[J]. Knowledge-Based Systems, 2021, 227: 107196.
[5] JOACHIMS T. Transductive inference for text classification using support vector machines[C]//Proceedings of the 16th International Conference on Machine Learning, 1999: 200-209.
[6] MOHEY D. Enhancement bag-of-words model for solving the challenges of sentiment analysis[J]. International Journal of Advanced Computer Science and Applications, 2016, 7(1).
[7] WEICHSELBRAUN A, GINDL S, SCHARL A. Extracting and grounding contextualized sentiment lexicons[J]. IEEE Intelligent Systems, 2013, 28(2): 39-46.
[8] QIU G, LIU B, BU J J, et al. Opinion word expansion and target extraction through double propagation[J]. Computational Linguistics, 2011, 37(1): 9-27.
[9] LIU K, XU L H, LIU Y, et al. Opinion target extraction using partially-supervised word alignment model[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2013: 2134-2140.
[10] AREVIAN G. Recurrent neural networks for robust real-world text classification[C]//Proceedings of the 2007 IEEE/WIC/ACM International Conference on Web Intelligence. Piscataway: IEEE, 2008: 326-329.
[11] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[12] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]//Proceedings of the 2014 Workshop on Deep Learning, 2014.
[13] LAKKARAJU H, SOCHER R, MANNING C. Aspect specific sentiment analysis using hierarchical deep learning[C]//Proceedings of the 2014 Workshop on Deep Learning and Representation Learning, 2014: 1-9.
[14] NGUYEN T H, SHIRAI K. PhraseRNN: phrase recursive neural network for aspect-based sentiment analysis[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 2509-2514.
[15] WANG W Y, PAN S J, DAHLMEIER D, et al. Recursive neural conditional random fields for aspect-based sentiment analysis[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 616-626.
[16] RUIDAN H, WEE S L, HWEE T N, et al. Effective attention modeling for aspect-level sentiment classification[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 1121-1131.
[17] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4567-4577.
[18] SUN K, ZHANG R C, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5678-5687.
[19] LIANG B, SU H, GUI L, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J]. Knowledge-Based Systems, 2022, 235: 107643.
[20] ZHAO A P, YU Y. Knowledge-enabled BERT for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2021, 227: 107220.
[21] 王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3): 1111-1118.
WANG R Y, TAO Z Y, ZHAO R J, et al. Multi-interaction graph convolutional networks for aspect-level sentiment analysis[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1111-1118.
[22] TANG H, JI D H, LI C L, et al. Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6578-6588.
[23] WANG P C, TAO L P, TANG M W, et al. Incorporating syntax and semantics with dual graph neural networks for aspect-level sentiment analysis[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108101.
[24] YANG P C, LI L, LUO F L, et al. Enhancing topic-to-essay generation with external commonsense knowledge[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2002-2012.
[25] CHATURVEDI I, SATAPATHY R, CAVALLARI S, et al. Fuzzy commonsense reasoning for multimodal sentiment analysis[J]. Pattern Recognition Letters, 2019, 125: 264-270.
[26] GHOSAL D, HAZARIKA D, ROY A, et al. KinGDOM: knowledge-guided domain adaptation for sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3198-3210.
[27] 孙佳慧, 韩萍, 程争. 基于知识迁移和注意力融合的方面级文本情感分析[J]. 信号处理, 2021, 37(8): 1384-1391.
SUN J H, HAN P, CHENG Z. Aspect-level sentiment analysis based on knowledge transfer and attention fusion[J]. Journal of Signal Processing, 2021, 37(8): 1384-1391.
[28] AHMAD K M, LIU Q, KHALIL M M Y, et al. Aspect-specific parsimonious segmentation via attention-based graph convolutional network for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2024, 300: 112169.
[29] WANG B, SHEN T, LONG G D, et al. Eliminating sentiment bias for aspect-level sentiment classification with unsupervised opinion extraction[C]//Findings of the Association for Computational Linguistics: EMNLP 2021. Stroudsburg: ACL, 2021: 3002-3012.
[30] ESULI A, SEBASTIANI F. SENTIWORDNET: a publicly available lexical resource for opinion mining[C]//Proceedings of the 2006 International Conference on Language Resources and Evaluation, 2006: 417-422.
[31] PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543.
[32] TANG D Y, QIN B, FENG X C, et al. Effective LSTMs for target-dependent sentiment classification[EB/OL]. [2024-10-20]. https://arxiv.org/abs/1512.01100.
[33] WANG Y Q, HUANG M L, ZHU X Y, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 606-615.
[34] TANG D Y, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 214-224.
[35] MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 4068-4074.
[36] CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 452-461.
[37] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 North American Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 4171-4186.
[38] WANG K, SHEN W Z, YANG Y Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3229-3238.
[39] ZENG J D, LIU T Y, JIA W J, et al. Relation construction for aspect-level sentiment classification[J]. Information Sciences, 2022, 586: 209-223.
[40] 张文轩, 殷雁君, 智敏. 用于方面级情感分析的情感增强双图卷积网络[J]. 计算机科学与探索, 2024, 18(1): 217-230.
ZHANG W X, YIN Y J, ZHI M. Affection enhanced dual graph convolution network for aspect based sentiment analysis[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 217-230.
[41] 谢珺, 高婧, 续欣莹, 等. 基于知识增强的双Transformer网络的方面级情感分析模型[J]. 数据分析与知识发现, 2024, 8(11): 47-58.
XIE J, GAO J, XU X Y, et al. Aspect-based sentiment analysis model of dual-transformer network based on knowledge enhancement[J]. Data Analysis and Knowledge Discovery, 2024, 8(11): 47-58. |