[1] JIANG S Q. Food computing for nutrition and health[C]//Proceedings of the 2024 IEEE 40th International Conference on Data Engineering. Piscataway: IEEE, 2024: 29-31.
[2] XIONG S F, TIAN W J, SI H P, et al. A survey of the applications of text mining for the food domain[J]. Algorithms, 2024, 17(5): 176.
[3] JIANG S Q, MIN W Q. Food computing for multimedia[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 4782-4784.
[4] ZHAO W Y, ZHOU D, CAO B Q, et al. Efficient low-rank multi-component fusion with component-specific factors in image-recipe retrieval[J]. Multimedia Tools and Applications, 2024, 83(2): 3601-3619.
[5] WAHED M, ZHOU X N, YU T J, et al. Fine-grained alignment for cross-modal recipe retrieval[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 5572-5581.
[6] ZOU Z Y, ZHU X H, ZHU Q Y, et al. CREAMY: cross-modal recipe retrieval by avoiding matching imperfectly[J]. IEEE Access, 2024, 12: 33283-33295.
[7] GOEL M, CHAKRABORTY P, PONNAGANTI V, et al. Ratatouille: a tool for novel recipe generation[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 107-110.
[8] CHHIKARA P, CHAURASIA D, JIANG Y F, et al. Fire: food image to recipe generation[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 8184-8194.
[9] 宋亚光, 杨小汕, 徐常胜. 跨模态多视角自监督的个性化食谱推荐异构图网络[J]. 计算机辅助设计与图形学学报, 2023, 35(3): 413-422.
SONG Y G, YANG X S, XU C S. A cross-modal multi-view self-supervised heterogeneous graph network for personalized food recommendation[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(3): 413-422.
[10] STARKE A D, MUSTO C, RAPP A, et al. “Tell me why”: using natural language justifications in a recipe recommender system to support healthier food choices[J]. User Modeling and User-Adapted Interaction, 2024, 34(2): 407-440.
[11] LI D Y, ZAKI M J. RECIPTOR: an effective pretrained model for recipe representation learning[C]//Proceedings of the 26th ACM SIGKDD International Conference on Know- ledge Discovery and Data Mining. New York: ACM, 2020: 1719-1727.
[12] TIAN Y J, ZHANG C X, METOYER R, et al. Recipe representation learning with networks[C]//Proceedings of the 30th ACM International Conference on Information & Know- ledge Management. New York: ACM, 2021: 1824-1833.
[13] CHEN L Z, LI W, CUI X H, et al. MS-GDA: improving heterogeneous recipe representation via multinomial sampling graph data augmentation[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2024, 20(7): 1-23.
[14] MARíN J, BISWAS A, OFLI F, et al. Recipe1M: a dataset for learning cross-modal embeddings for cooking recipes and food images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(1): 187-203.
[15] SUGIYAMA Y, YANAI K. Cross-modal recipe embeddings by disentangling recipe contents and dish styles[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 2501-2509.
[16] MA J L, QIU Y L, YANG C Q, et al. BioNet: a comprehensive interaction model of finding therapeutics for diseases with graph deep learning[C]//Proceedings of the 2023 IEEE International Conference on High Performance Computing & Communications. Piscataway: IEEE, 2023: 369-376.
[17] 朱金侠, 孟祥福, 邢长征, 等. 融合社交关系的轻量级图卷积协同过滤推荐方法[J]. 智能系统学报, 2022, 17(4): 788-797.
ZHU J X, MENG X F, XING C Z, et al. Light graph convolutional collaborative filtering recommendation approach incorporating social relationships[J]. CAAI Transactions on Intelligent Systems, 2022, 17(4): 788-797.
[18] ZENG X H, PENG H, LI A S. Adversarial socialbots modeling based on structural information principles[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(1): 392-400.
[19] TIAN Y J, ZHANG C X, GUO Z C, et al. Recipe2Vec: multi-modal recipe representation learning with graph neural networks[C]//Proceedings of the 2022 International Joint Conference on Artificial Intelligence. Palo Alto: AAAI,2022: 3473-3479.
[20] 王慧妍, 于明鹤, 于戈. 基于深度学习的异质信息网络表示学习方法综述[J]. 计算机科学, 2023, 50(5): 103-114.
WANG H Y, YU M H, YU G. Deep learning-based heterogeneous information network representation: a survey[J]. Computer Science, 2023, 50(5): 103-114.
[21] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Semantic Web Conference. Cham: Springer, 2018: 593-607.
[22] WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2022-2032.
[23] NOZAWA K, SATO I. Evaluation methods for representation learning: a survey[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2022: 5556-5563.
[24] THEKUMPARAMPIL K K, WANG C, OH S, et al. Attention- based graph neural network for semi-supervised learning[EB/OL]. [2024-07-08]. https://arxiv.org/abs/1803.03735.
[25] XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[C]//Proceedings of the 7th International Conference on Learning Representations, 2019.
[26] ZADEH A, CHEN M H, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 1103-1114.
[27] GUO C, LEE M, LECLERC G, et al. Adversarially trained neural representations are already as robust as biological neural representations[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 8072-8081.
[28] BOSSARD L, GUILLAUMIN M, VAN GOOL L. Food-101-mining discriminative components with random forests[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 446-461.
[29] CHEN J J, NGO C W. Deep-based ingredient recognition for cooking recipe retrieval[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 32-41.
[30] TENG C Y, LIN Y R, ADAMIC L A. Recipe recommendation using ingredient networks[C]//Proceedings of the 4th Annual ACM Web Science Conference. New York: ACM, 2012: 298-307.
[31] PARK D, KIM K, KIM S, et al. FlavorGraph: a large-scale food-chemical graph for generating food representations and recommending food pairings[J]. Scientific Reports, 2021, 11: 931.
[32] HAUSSMANN S, SENEVIRATNE O, CHEN Y, et al. FoodKG: a semantics-driven knowledge graph for food recommendation[C]//Proceedings of the 18th International Semantic Web Conference. Cham: Springer, 2019: 146-162.
[33] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751.
[34] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, 2018.
[35] HU Z N, DONG Y X, WANG K S, et al. Heterogeneous graph transformer[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 2704-2710.
[36] WANG H, LIN G S, HOI S C H, et al. Learning structural representations for recipe generation and food retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3363-3377.
[37] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |