[1] HUANG H G, LIU J B, WANG R S. Easy-Net: a lightweight building extraction network based on building features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 4501515.
[2] 侯佳兴, 齐向明, 郝明, 等. 融合Partial卷积与残差细化的遥感影像建筑物提取算法[J]. 计算机科学与探索, 2024, 18(10): 2712-2726.
HOU J X, QI X M, HAO M, et al. Building extraction algorithm for remote sensing images by fusing partial convolution and residual refinement[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2712-2726.
[3] TURKER M, KOC-SAN D. Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34: 58-69.
[4] 吴秀芸, 李艳. 基于改进标记分水岭的遥感影像建筑物提取[J]. 水电能源科学, 2010, 28(4): 72-74.
WU X Y, LI Y. Building extraction from remote sensing image based on improved marker-controlled watershed algorithm[J]. Water Resources and Power, 2010, 28(4): 72-74.
[5] 李晓冬, 凌峰, 杜耘. 基于各向异性Markov随机场的遥感影像亚像元尺度建筑物提取[J]. 中国图象图形学报, 2012, 17(8): 1042-1048.
LI X D, LING F, DU Y. Building extraction at the sub-pixel scale from remotely sensed images based on anisotropic Markov random field[J]. Journal of Image and Graphics, 2012, 17(8): 1042-1048.
[6] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[7] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[8] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239.
[9] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[10] YI Y N, ZHANG Z J, ZHANG W C, et al. Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network[J]. Remote Sensing, 2019, 11(15): 1774.
[11] ZHU Q, LIAO C, HU H, et al. MAP-net: multiple attending path neural network for building footprint extraction from remote sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 6169-6181.
[12] ZUO X L, SHAO Z F, WANG J M, et al. A cross-stage features fusion network for building extraction from remote sensing images[J]. Geo-spatial Information Science, 2025, 28(2): 387-401.
[13] DOSSVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words[EB/OL]. [2024-09-13]. http://arxiv.org/abs/2010.11929.pdf.
[14] CHEN K Y, ZOU Z X, SHI Z W. Building extraction from remote sensing images with sparse token transformers[J]. Remote Sensing, 2021, 13(21): 4441.
[15] HE X, ZHOU Y, ZHAO J Q, et al. Swin transformer embedding UNet for remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4408715.
[16] ZHANG R H, WAN Z C, ZHANG Q, et al. DSAT-Net: dual spatial attention transformer for building extraction from aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6008405.
[17] XU L L, LI Y, XU J Z, et al. BCTNet: bi-branch cross-fusion transformer for building footprint extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4402014.
[18] XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers [C]//Advances in Neural Information Processing Systems 34, 2021: 12077-12090.
[19] HOU R, CHANG H, MA B, et al. Cross attention network for few-shot classification[C]//Advances in Neural Information Processing Systems 32, 2019: 4005-4016.
[20] NI Y, LIU J H, CHI W J, et al. CGGLNet: semantic segmentation network for remote sensing images based on category-guided global-local feature interaction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5615617.
[21] WANG W, DAI J, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the 2023 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 14408-14419.
[22] WANG L B, FANG S H, MENG X L, et al. Building extraction with vision transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5625711.
[23] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[24] SUN K, ZHAO Y, JIANG B, et al. High-resolution representations for labeling pixels and regions[EB/OL]. [2024-09-13]. https://arxiv.org/abs/1904.04514.pdf.
[25] LIU Y, ZHAO Z Y, ZHANG S W, et al. Multiregion scale-aware network for building extraction from high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5626310.
[26] WANG L B, LI R, ZHANG C, et al. UNetFormer: a UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196-214.
[27] QIU Y, WU F, YIN J C, et al. MSL-Net: an efficient network for building extraction from aerial imagery[J]. Remote Sensing, 2022, 14(16): 3914.
[28] ZHOU Y, CHEN Z L, WANG B, et al. BOMSC-Net: boundary optimization and multi-scale context awareness based building extraction from high-resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5618617.
[29] LIN H J, HAO M, LUO W Q, et al. BEARNet: a novel buildings edge-aware refined network for building extraction from high-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6005305. |