计算机科学与探索

• 学术研究 •    下一篇

面向AGV环境感知的图像点云融合研究综述

王荣儿,伍济钢   

  1. 1.湖南科技大学 机电工程学院,湖南 湘潭 411100
    2.湖南科技大学 机械设备健康维护湖南省重点实验室,湖南 湘潭 411100

A Review of Image-Point Cloud Fusion Research for AGV Environment Perception

WANG Ronger,  WU Jigang   

  1. 1.College of Mechanical and Electrical Engineering,Hunan University of Science and Technology, Xiangtan, Hunan 411100, China
    2.Hunan Key Laboratory of Mechanical Equipment Health Maintenance, Hunan University of Science and Technology, Xiangtan, Hunan 411100, China

摘要: 随着自动化工业生产线和智能物流仓储系统的快速发展,自动导引车(Automated Guided Vehicle,AGV)作为工业自动化与智能制造的核心载体,其环境感知能力是实现高精度自主导航与智能化作业的先决条件。通过人工智能与多模态传感技术的深度融合,AGV能够突破传统感知模式的局限性,实现对复杂工业场景的动态理解与自主响应。其中,基于图像与点云的融合感知技术,凭借其在三维空间解析与语义信息互补方面的优势,成为提升AGV环境感知鲁棒性与适应性的关键突破方向。因此,首先对图像点云融合技术在AGV环境感知中的演进脉络进行梳理,其次对比典型融合策略的性能边界与应用场景,并且重点对基于深度学习的图像点云融合技术方法进行分析和总结,最后针对多传感器标定与长期稳定性,算法实时性,边缘计算资源与算法复杂度的矛盾及极端工况适应性等瓶颈问题,从无监督在线标定,动态感知-决策闭环优化,算法-任务协同设计以及极端场景自适应感知等维度探讨技术发展方向,为构建更安全、高效、普适的AGV环境感知体系提供理论支撑与技术路径参考。

关键词: AGV, 图像点云融合, 深度学习, 环境感知, 人工智能

Abstract: With the rapid development of automated industrial production lines and intelligent logistics and warehousing systems, Automated Guided Vehicle (AGV) serve as core components in industrial automation and smart manufacturing. The environmental perception capability constitutes a prerequisite for achieving high-precision autonomous navigation and intelligent operations. The deep integration of artificial intelligence and multimodal sensing technologies enables AGV to overcome the limitations of traditional perception modes, realizing dynamic understanding and autonomous responses in complex industrial scenarios. Image-point cloud fusion perception technology has emerged as a critical breakthrough direction for enhancing AGV perception robustness and adaptability, leveraging its advantages in 3D spatial resolution and semantic information complementarity. The evolutionary trajectory of image-point cloud fusion technology in AGV environmental perception is systematically reviewed, while performance boundaries and application scenarios of typical fusion strategies are compared, along with deep learning-based fusion methodologies being analyzed. Bottleneck challenges including multi-sensor calibration and long-term stability, algorithm real-time performance, conflicts between edge computing resources and algorithm complexity, and extreme condition adaptability are addressed, with technical development directions being proposed from four dimensions: unsupervised online calibration, dynamic perception-decision closed-loop optimization, algorithm-task co-design, and adaptive perception in extreme scenarios. Theoretical foundations and technical references are provided for the construction of safer, more efficient, and universally applicable AGV environmental perception systems through these proposed approaches.

Key words: AGV, image-point cloud fusion, deep learning, environmental perception, artificial intelligence