计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (6): 1028-1035.DOI: 10.3778/j.issn.1673-9418.1905016
王乐为,余鹰,张应龙
WANG Lewei, YU Ying, ZHANG Yinglong
摘要:
当前,古诗句生成任务大多基于单一的循环神经网络(RNN)结构,在生成时需事先给定一个起始字,然后以该起始字为基础进行古诗句生成,生成过程的可控性较差,往往达不到预期效果。针对以上问题,将注意力机制引入Seq2Seq模型,通过自建的数据集进行训练,实现了基于关键字的自定义古诗句生成。在生成阶段,首先输入一段描述性内容,并从中提取出关键字。当关键字不足时,使用word2vec进行有效的关键字补全操作。此外,针对古诗体裁难以控制问题,在Seq2Seq模型中的Encoder端增加格式控制符,有效解决了以往模型在生成古诗时,体裁选择的随机性问题。实验表明,所提出的模型较好地达到了预期的生成效果。