[1] SUN B, JU Q Q, SANG Q B. Image dehazing algorithm based on FC-DenseNet and WGAN[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1380-1388.
孙斌, 雎青青, 桑庆兵. 结合FC-DenseNet和WGAN的图像去雾算法[J]. 计算机科学与探索, 2020, 14(8): 1380-1388.
[2] SAMPEDRO C, RODRIGUEZ-VAZQUEZ J, RODRIGUEZ-RAMOS A, et al. Deep learning-based system for automatic recognition and diagnosis of electrical insulator strings[J]. IEEE Access, 2019, 7: 101283-101308.
[3] HARIKRISHNAN J, SUDARSAN A, SADASHIV A, et al. Vision-face recognition attendance monitoring system for surveillance using deep learning technology and computer vision[C]//Proceedings of the 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking, Vellore, Mar 30-31, 2019. Piscataway: IEEE, 2019: 1-5.
[4] LIN K Z, BAI J X, LI H T, et al. Facial expression recognition with small samples fused with different models under deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 482-492.
林克正, 白婧轩, 李昊天, 等. 深度学习下融合不同模型的小样本表情识别[J]. 计算机科学与探索, 2020, 14(3): 482-492.
[5] WANG Z Y, YUAN C, LI J C. Instance segmentation with separable convolutions and multi-level features[J]. Journal of Software, 2019, 30(4): 954-961.
王子愉, 袁春, 黎健成. 利用可分离卷积和多级特征的实例分割[J]. 软件学报, 2019, 30(4): 954-961.
[6] XIAO L, CHEN B L, HUANG X, et al. Multi-label text classification method based on label semantic information[J]. Journal of Software, 2020, 31(4): 1079-1089.
肖琳, 陈博理, 黄鑫, 等. 基于标签语义注意力的多标签文本分类[J]. 软件学报, 2020, 31(4): 1079-1089.
[7] JAF S, CALDER C. Deep learning for natural language par-sing[J]. IEEE Access, 2019, 7: 131363-131373.
[8] ROBERTS L G. Machine perception of three-dimensional solids[D]. Cambridge: Massachusetts Institute of Technology, 1963.
[9] PELLEGRINO F A, VANZELLA W, TORRE V. Edge detection revisited[J]. IEEE Transactions on Systems, Man, and Cyber-netics, Part B, 2004, 34(3): 1500-1518.
[10] MARR D, HILDRETH E. Theory of edge detection[J]. Pro-ceedings of the Royal Society B: Biological Sciences, 1980, 207(1167): 187-217.
[11] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intell-igence, 1986(6): 679-698.
[12] HARRIS C G, STEPHENS M. A combined corner and edge detector[C]//Proceedings of the Alvey Vision Conference, Manchester, Sep, 1988: 1-6.
[13] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Sep 20-27, 1999. Washington: IEEE Computer Society, 1999: 1150-1157.
[14] ROSTEN E, PORTER R, DRUMMOND T. Faster and better: a machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machine Inte-lligence, 2008, 32(1): 105-119.
[15] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[16] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
[17] ZHAO Q, PRINCIPE J C. Support vector machines for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 643-654.
[18] THIAGARAJAN J J, RAMAMURTHY K N, KNEE P, et al. Sparse representations for automatic target classification in SAR images[C]//Proceedings of the 2010 4th International Symposium on Communications, Control and Signal Pro-cessing, Limassol, Mar 3-5, 2010. Piscataway: IEEE, 2010: 1-4.
[19] MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Math-ematical Biophysics, 1943, 5(4): 115-133.
[20] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psych-ological Review, 1958, 65(6): 386-408.
[21] MYCIELSKI J. Book review: perceptrons, an introduction to computational geometry[J]. Bulletin of The American Mathematical Society, 1972, 78(1): 12-16.
[22] RUMELHART D E, Hinton G E, Williams R J. Learning representations by back propagating errors[J]. Nature, 1986, 323(6088): 533-536.
[23] HOCHREITER S. Untersuchungen zu dynamischen neuronalen Netzen[R]. Linz: Johannes Kepler University Linz, 1991: 1-65.
[24] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief net[J]. Neural Computation, 2006, 18(7): 1527-1554.
[25] LECUN Y, BOTTOU L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[26] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Infor-mation Processing Systems, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1106-1114.
[27] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//LNCS 8689: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Berlin, Heidelberg: Springer, 2014: 818-833.
[28] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large scale image recognition[J]. arXiv:1409. 1556, 2014.
[29] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1026-1034.
[30] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 6105-6114.
[31] LIN M, CHEN Q, YAN S C. Networkin network[C]//Proceedings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014: 1-10.
[32] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[33] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2818-2826.
[34] HOCHREITER S, SCHMIDHUBER J. Long short-term me-mory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[35] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recog-nition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778.
[36] XIE S N, GIRSHICK R B, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proc-eedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Wash-ington: IEEE Computer Society, 2017: 5987-5995.
[37] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269.
[38] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Incep-tion-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park:AAAI, 2017: 4278-4284.
[39] YAMADA Y, IWAMURA M, KISE K. Deep pyramidal residual networks with separated stochastic depth[J]. arXiv:1612.01230, 2016.
[40] ZAGORUYKO S, KOMODAKIS N. Wide residual networks[J]. arXiv:1605.07146, 2016.
[41] ZHANG X, LI Z, CHANGE LOY C, et al. PolyNet: a pursuit of structural diversity in very deep networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3900-3908.
[42] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[43] LI X, WANG W H, HU X L, et al. Selective kernel networks[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 510-519.
[44] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 3-19.
[45] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. Squ-eezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size[J]. arXiv:1602.07360, 2016.
[46] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Mon-treal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2672-2680.
[47] ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//Proc-eedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 4353-4361.
[48] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1577-1586.
[49] GIRSHICK R B, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587.
[50] GIRSHICK R B. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448.
[51] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2017, 39(6): 1137-1149.
[52] DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 379-387.
[53] GIDARIS S, KOMODAKIS N. Object detection via a multi- region and semantic segmentation-aware CNN model[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1134-1142.
[54] SERMANET P, EIGEN D, ZHANG X, et al. OverFeat: integrated recognition, localization and detection using con-volutional networks[J]. arXiv:1312.6229, 2013.
[55] REDMON J, DIVVALA S K, GIRSHICK R B, et al. You only look once: unified, real-time object detection[C]//Pro-ceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Wash-ington: IEEE Computer Society, 2016: 779-788.
[56] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 21-37.
[57] REDMON J, FARHADI A. YOLO9000: better, faster, str-onger[C]//Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7263-7271.
[58] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017.
[59] REDMON J, FARHADI A. YOLOv3: an incremental impro-vement[J]. arXiv:1804.02767, 2018.
[60] SHEN Z Q, LIU Z, LI J G, et al. DSOD: learning deeply supervised object detectors from scratch[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1937-1945.
[61] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 8759-8768.
[62] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[63] LAW H, HENG J. Cornernet: detecting objects as paired keypoints[C]//LNCS 11218: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 765-781.
[64] ZHOU X Y, ZHOU J C, KR?HENBüHL P. Bottom up object detection by grouping extreme and center points[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 850-859.
[65] DUAN K, BAI S, XIE L X, et al. Centernet: keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6569-6578.
[66] ZHU C C, HE Y H, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway:IEEE, 2019: 840-849.
[67] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convo-lutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9626-9635.
[68] VAILLANT R, MONROCQ C, LE CUN Y. Original approach for the localisation of objects in images[J]. Vision, Image and Signal Processing, 1994, 141(4): 245-250.
[69] SERMANET P, KAVUKCUOGLU K, CHINTALA S, et al. Pedestrian detection with unsupervised multi-stage feature learning[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Piscataway: IEEE, 2013: 3626-3633.
[70] HU C, BAI X, QI L, et al. Vehicle color recognition with spatial pyramid deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2925-2934.
[71] SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]//Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, Jul 31-Aug 5, 2011. Piscataway: IEEE, 2011: 2809-2813.
[72] WANG L, WONG A. COVID-Net: a tailored deep con-volutional neural network design for detection of COVID-19 cases from chest X-Ray images[J]. arXiv:2003.09871, 2020.
[73] HUANG Z J, SANG Q B. Ship detection based on improved R-FCN[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 1045-1053.
黄致君, 桑庆兵. 改进R-FCN的船舶识别方法[J]. 计算机科学与探索, 2020, 14(6): 1045-1053.
[74] LUO X Q, PAN S L. Improved YOLOV3 fire detection method[J]. Computer Engineering and Applications, 2020, 56(17): 187-196.
罗小权, 潘善亮. 改进YOLOV3的火灾检测方法[J]. 计算机工程与应用, 2020, 56(17): 187-196.
[75] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Com-puter Society, 2015: 3431-3440.
[76] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[77] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 833-851.
[78] RONNEBERGER O, FISCHER P, BROX T. U-net: con-volutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Con-ference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Berlin, Heidelberg: Springer, 2015: 234-241.
[79] MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Con-ference on 3D Vision, Stanford, Oct 25-28, 2016. Washington: IEEE Computer Society, 2016: 565-571.
[80] LIU W, RABINOVICH A, BERG A C. Parsenet: looking wider to see better[J]. arXiv:1506.04579, 2015.
[81] LIN G S, MILAN A, SHEN C H, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5168-5177.
[82] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[83] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6230-6239.
[84] YUAN Y, WANG J. OCNet: object context network for scene parsing[J]. arXiv:1809.00916, 2018.
[85] Al-ARIFS M M R, KNAPP K, SLABAUGH G G. SPNet: shape prediction using a fully convolutional neural network[C]//LNCS 11070: Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Granada, Sep 16-20, 2018. Berlin, Heidelberg: Springer, 2018: 430-439.
[86] YU C Q, WANG J B, GAO C X, et al. Context prior for scene segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 12416-12425.
[87] PENG C, ZHANG X Y, YU G, et al. Large kernel matters—improve semantic segmentation by global convolutional network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1743-1751.
[88] LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation[J]. arXiv:1805.10180, 2018.
[89] YU C Q, WANG J B, PENG C, et al. Learning a discrim-inative feature network for semantic segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 1857-1866.
[90] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE Con-ference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3146-3154.
[91] YANG L, HAN Y Z, CHEN X, et al. Resolution adaptive networks for efficient inference[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2366-2375.
[92] WANG Y D, ZHANG J, KAN M, et al. Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 12272-12281.
[93] CHOI S, KIM J T, CHOO J. Cars can??t fly up in the sky: improving urban-scene segmentation via height-driven atten-tion networks[C]//Proceedings of the 2020 IEEE/CVF Con-ference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 9370-9380.
[94] LEE S, KIM J, SHIN YOON J, et al. VPGNet: vanishing point guided network for lane and road marking detection and recognition[C]//Proceedings of the 2017 IEEE Intern-ational Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1965-1973.
[95] DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a: a deep learning framework for semantic seg-mentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114.
[96] TRAN T, KWON O H, KWON K R, et al. Blood cell images segmentation using deep learning semantic segmentation [C]//Proceedings of the 2018 IEEE International Con-ference on Electronics and Communication Engineering, Xi??an, Dec 10-12, 2018. Piscataway: IEEE, 2018: 13-16.
[97] EDUPUGANTI V G, CHAWLA A, KALE A. Automatic optic disk and cup segmentation of fundus images using deep learning[C]//Proceedings of the 2018 IEEE International Conference on Image Processing, Athens, Oct 7-10, 2018. Piscataway: IEEE, 2018: 2227-2231.
[98] LIU C, XIAO Z Y, WU X X. Application of three-dim-ensional convolution network in brain hippocampus segm-entation[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(3): 493-501.
刘辰, 肖志勇, 吴鑫鑫. 三维卷积网络在脑海马体分割中的应用[J]. 计算机科学与探索, 2020, 14(3): 493-501.
[99] WANG Y G, XI Y Y, PAN X Y. Method for intestinal Polyp segmentation by improving DeepLabv3+ network[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1243-1250.
王亚刚, 郗怡媛, 潘晓英. 改进DeepLabv3+网络的肠道息肉分割方法[J]. 计算机科学与探索, 2020, 14(7): 1243-1250.
[100] WANG Z, SHI Y, LI Y B. Segmentation of corn leaf diseases based on improved fully convolutional neural network[J]. Computer Engineering and Applications, 2019, 55(22): 127-132.
王振, 师韵, 李玉彬. 基于改进全卷积神经网络的玉米叶片病斑分割[J]. 计算机工程与应用, 2019, 55(22): 127-132.
[101] COLLOBERT R, WESTON J. A unified architecture for natural language processing: deep neural networks with multitask learning[C]//Proceedings of the 25th International Conference on Machine Learning, Helsinki, Jun 5-9, 2008. New York: ACM, 2008: 160-167.
[102] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493-2537.
[103] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1746-1751.
[104] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[J]. arXiv:1404.2188, 2014.
[105] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Com-putational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 562-570.
[106] WANG R S, LI Z, CAO J, et al. Convolutional recurrent neural networks for text classification[C]//Proceedings of the 2019 International Joint Conference on Neural Networks, Budapest, Jul 14-19, 2019. Piscataway: IEEE, 2019: 1-6.
[107] KALCHBRENNER N, ESPEHOLT L, SIMONYAN K, et al. Neural machine translation in linear time[J]. arXiv:1610.10099, 2016.
[108] YU L T, ZHANG W N, WANG J, et al. SeqGAN: sequence generative adversarial nets with policy gradient[C]//Procee-dings of the 31st AAAI Conference on Artificial Inte-lligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 2852-2858.
[109] YAN D, HE J, LIU H Y, et al. Considering grade infor-mation for music comment text automatic generation[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1389-1396.
严丹, 何军, 刘红岩, 等. 考虑评级信息的音乐评论文本自动生成[J]. 计算机科学与探索, 2020, 14(8): 1389-1396.
[110] TU W B, YUAN Z M, YU K. Convolutional neural networks without pooling layer for Chinese word segmentation[J]. Computer Engineering and Applications, 2020, 56(2): 120-126.
涂文博, 袁贞明, 俞凯. 无池化层卷积神经网络的中文分词方法[J]. 计算机工程与应用, 2020, 56(2): 120-126. |