[1] JI L Y, JIANG X Y, GAO Y B, et al. ADR-Net: context extraction network based on M-Net for medical image segmentation[J]. Medical Physics, 2020, 47(9): 4254-4264.
[2] ANASTASI J K, CHANG M, QUINN J, et al. Tongue inspection in TCM: observations in a study sample of patients living with HIV[J]. Medical Acupuncture, 2014, 26(1): 15-22.
[3] LIU W X, ZHOU C G, LI Z Y, et al. Patch-driven tongue image segmentation using sparse representation[J]. IEEE Access, 2020, 8: 41372-41383.
[4] XIANG L W. Research on image feature extraction improved algorithm for images of spleen deficiency tongue image recognition[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
项里伟. 脾虚舌象识别的图像特征提取优化算法研究[D]. 赣州: 江西理工大学, 2017.
[5] JIANG S, HU J, XIA C M, et al. A tongue image separation method based on Otsu threshold method and morphological adaptive correction[J]. Chinese High Technology Letters, 2017, 27(2): 150-155.
姜朔, 胡洁, 夏春明, 等. 基于Otsu阈值法与形态学自适应修正的舌像分割方法[J]. 高技术通讯, 2017, 27(2): 150-155.
[6] HUANG Z P, HAUNG Y S, YI F L, et al. An automatic tongue segmentation algorithm based on OTSU and region growing[J]. Lishizhen Medicine and Materia Medica Research, 2017, 28(12): 3062-3064.
黄展鹏, 黄益栓, 易法令, 等. 基于最大类间方差法和区域生长的舌体自动分割[J]. 时珍国医国药, 2017, 28(12): 3062-3064.
[7] YAN J J, XU Z, GUO R, et al. Research on tongue image segmentation based on active contour model of force field[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2019, 34(8): 3725-3727.
颜建军, 徐姿, 郭睿, 等. 基于力场活动轮廓模型的舌图像分割研究[J]. 中华中医药杂志, 2019, 34(8): 3725-3727.
[8] CHEN Z F, DENG X, LU Z T. A new and fast method for automatic tongue cancer image segmentation[J]. Chinese Journal of Medical Physics, 2020, 37(8): 1022-1029.
陈之锋, 邓旋, 卢振泰. 一种新的舌癌图像快速自动分割方法[J]. 中国医学物理学杂志, 2020, 37(8): 1022-1029.
[9] JIANG Z Y. A study of tongue segmentation from image and tongue recognition and classification algorithm[D]. Qinhuangdao: Yanshan University, 2017.
蒋再毅. 舌像分割与舌体识别及分类算法研究[D]. 秦皇岛: 燕山大学, 2017.
[10] LIANG F X, YANG F, LU L Y, et al. Review of brain tumor segmentation methods based on convolutional neural networks[J]. Computer Engineering and Applications, 2021, 57(7): 34-43.
梁芳烜, 杨锋, 卢丽云, 等. 基于卷积神经网络的脑肿瘤分割方法综述[J]. 计算机工程与应用, 2021, 57(7): 34-43.
[11] YANG P W, ZHOU Y H, XING G, et al. Applications of convolutional neural network in biomedical image[J]. Computer Engineering and Applications, 2021, 57(7): 44-58.
杨培伟, 周余红, 邢岗, 等. 卷积神经网络在生物医学图像上的应用进展[J]. 计算机工程与应用, 2021, 57(7): 44-58.
[12] MA Q P, XIE L B, PENG L. Application of improved convolutional neural network in medical image segmentation[J]. Laser & Optoeletronics Progress, 2020, 57(14): 190-196.
马其鹏, 谢林柏, 彭力. 改进的卷积神经网络在医学影像分割中的应用[J]. 激光与光电子学进展, 2020, 57(14): 190-196.
[13] LIAO D A, LU H, XU X P, et al. Image segmentation based on deep learning features[C]//Proceedings of the 2019 11th International Conference on Advanced Computational Intelligence, Guilin, Jun 7-9, 2019. Piscataway: IEEE, 2019: 296- 301.
[14] MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: a survey[J]. arXiv:2001.05566, 2020.
[15] ZHUANG S H, LI X, TIAN Z K, et al. Research on tongue instrument based on bibliometrics[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2020, 22(5): 1545-1552.
庄淑涵, 李馨, 田之魁, 等. 基于文献计量学的舌象仪研究[J]. 世界科学技术-中医药现代化, 2020, 22(5): 1545-1552.
[16] WANG D J, ZHU Q Q, YU J Y, et al. Atlas and visualization analysis of scientific knowledge in the field of tongue objectification research based on CiteSpace[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2021, 23(1): 283-291.
王东军, 朱青青, 余静寅, 等. 基于CiteSpace的舌诊客观化研究领域科学知识图谱与可视化分析[J]. 世界科学技术-中医药现代化, 2021, 23(1): 283-291.
[17] TIAN C Y, SUN X, ZHUANG S H, et al. Bibliometric analysis of tongue segmentation techniques[J]. Journal of Tianjin University of Traditional Chinese Medicine, 2019, 38(5): 461-467.
田春颖, 孙璇, 庄淑涵, 等. 舌象分割技术的文献计量学分析[J]. 天津中医药大学学报, 2019, 38(5): 461-467.
[18] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[19] KRIZHEVSKY B A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-12.
[21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Automation, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[22] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269.
[23] LIN B Q, XLE J W, LI C H, et al. Deeptongue: tongue segmentation via Resnet[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Apr 15-20, 2018. Piscataway: IEEE, 2018: 1035-1039.
[24] PINHEIRO P H O, COLLOBERT R, DOLLáR P. Learning to segment object candidates[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 1990-1998.
[25] LI J, XU B C, BAN X J, et al. A tongue image segmentation method based on enhanced HSV convolutional neural network[C]//LNCS 10451: Proceedings of the 14th International Conference on Cooperative Design, Visualization, and Engineering, Mallorca, Sep 17-20, 2017. Cham: Springer, 2017: 252-260.
[26] CAI Y Z, WANG T, LIU W, et al. A robust interclass and intraclass loss function for deep learning based tongue segmentation[J]. Concurrency and Computation: Practice and Experience, 2020, 32(22): 1-13.
[27] LIU Z H, CHEN L, TONG L, et al. Deep learning based brain tumor segmentation: a survey[J]. arXiv:2007.09479, 2020.
[28] YUAN W, LIU C. Cascaded CNN for real-time tongue segmentation based on key points localization[C]//Proceedings of the 4th IEEE International Conference on Big Data Analytics, Beijing, Mar 15-18, 2019. Washington: IEEE Computer Society, 2019: 303-307.
[29] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
[30] LI X L, YANG T, HU Y Y, et al. Automatic tongue image matting for remote medical diagnosis[C]//Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, Nov 13-16, 2017. Washington: IEEE Computer Society, 2017: 561-564.
[31] WANG L, HE X, TANG Y P, et al. Tongue semantic segmentation based on fully convolutional neural network[C]//Proceedings of the 2019 International Conference on Intelligent Computing, Automation and Systems, Chongqing, Dec 6-8, 2019. Piscataway: IEEE, 2019: 298-301.
[32] XUE Y S, LI X Q, WU P, et al. Automated tongue segmentation in Chinese medicine based on deep learning[C]//LNCS 11307: Proceedings of the 25th International Conference on Neural Information Processing, Siem Reap, Dec 13-16, 2018. Cham: Springer, 2018: 542-553.
[33] ROTHER C, KOLMOGOROV V, BLAKE A. GrabCut: interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.
[34] KR?HENBüHL P, KOLTUN V. Efficient inference in fully connected CRFs with Gaussian edge potentials[C]//Procee-dings of the 25th Annual Conference on Neural Information Processing Systems, Spain, Dec 12-17, 2011. Red Hook: Curran Associates, 2011: 109-117.
[35] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[36] ZHANG X F, GUO Y T, CAI Y H, et al. Tongue image segmentation algorithm based on deep convolutional neural network and fully conditional random fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2364-2374.
张新峰, 郭宇桐, 蔡轶珩, 等. 基于DCNN和全连接CRF的舌图像分割算法[J]. 北京航空航天大学学报, 2019, 45(12): 2364-2374.
[37] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[38] QU P L, ZHANG H, ZHUO L, et al. Automatic tongue image segmentation for traditional Chinese medicine using deep neural network[C]//LNCS 10361: Proceedings of the 13th International Conference on Intelligent Computing Theories and Application, Liverpool, Aug 7-10, 2017. Cham: Springer, 2017: 247-259.
[39] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 2015 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[40] XU Q, ZENG Y, TANG W J, et al. Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 14(8): 2481-2489.
[41] TRAJANOVSKI S, SHAN C, WEIJTMANS P J C, et al. Tongue tumor detection in hyperspectral images using deep learning semantic segmentation[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(4): 1330-1340.
[42] LI L, LUO Z, ZHANG M, et al. An iterative transfer learning framework for cross-domain tongue segmentation[J]. Concurrency Computation, 2020, 32(14): 1-11.
[43] ZHOU J, ZHANG Q, ZHANG B, et al. TongueNet: a precise and fast tongue segmentation system using U-Net with a morphological processing layer[J]. Applied Sciences, 2019, 9(15): 3128-3147.
[44] YUAN Y H, CHEN X L, WANG J D. Object-contextual representations for semantic segmentation[C]//LNCS 12351: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 173-190.
[45] MA L X, YANG H, SONG T T, et al. Research on segmentation algorithm of tongue image based on high resolution feature[J]. Computer Engineering, 2020, 46(10): 248-252.
马龙祥, 杨浩, 宋婷婷, 等. 基于高分辨率特征的舌象分割算法研究[J]. 计算机工程, 2020, 46(10): 248-252.
[46] SUN G Y, HUANG H, ZHANG A Z, et al. Fusion of multiscale convolutional neural networks for building extraction in very high-resolution images[J]. Remote Sensing, 2019, 11(3): 227.
[47] GIRSHICK R B, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587.
[48] GIRSHICK R B. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448.
[49] REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[50] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397.
[51] GHOLAMI E, TABBAKH S R K, KHEIRABADI M. Proposing method to increase the detection accuracy of stomach cancer based on color and lint features of tongue using CNN and SVM[J]. arXiv:2011.09962, 2020.
[52] ZHOU C, FAN H Y, LI Z Y. TongueNet: accurate localization and segmentation for tongue images using deep neural networks[J]. IEEE Access, 2019, 7: 148779-148789.
[53] YAN J J, XU Z, GUO R, et al. Research on tongue image segmentation based on mask R-CNN[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2020, 22(5): 1532-1538.
颜建军, 徐姿, 郭睿, 等. 基于Mask R-CNN的舌图像分割研究[J]. 世界科学技术-中医药现代化, 2020, 22(5): 1532-1538.
[54] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412.7062, 2014.
[55] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethin-king atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[56] ZHENG Y J, KAMBHAMETTU C. Learning based digital matting[C]//Proceedings of the 12th IEEE International Conference on Computer Vision, Kyoto, Sep 27-Oct 4, 2009. Washington: IEEE Computer Society, 2009: 889-896.
[57] LU Y X, LI X G, ZHANG H, et al. Review on tongue image segmentation technologies for traditional Chinese medicine: methodologies, performances and prospects[J]. Acta Automatica Sinica, 2021, 47(5): 1005-1016.
卢运西, 李晓光, 张辉, 等. 中医舌象分割技术研究进展: 方法、性能与展望[J]. 自动化学报, 2021, 47(5): 1005-1016.
[58] YIN Z, YIU V, HU X L, et al. End-to-end face parsing via interlinked convolutional neural networks[J]. Cognitive Neurodynamics, 2020, 15: 169-179.
[59] LIU Y L, SHI H L, SHEN H, et al. A new dataset and boundary-attention semantic segmentation for face parsing[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 11637-11644.
[60] KHAN K, ATTIQUE M, KHAN R, et al. A multi-task framework for facial attributes classification through end-to-end face parsing and deep convolutional neural networks[J]. Sensors, 2020, 20: 328.
[61] WEI Z, LIU S, SUN Y, et al. Accurate facial image parsing at real-time speed[J]. IEEE Transactions on Image Processing, 2019, 28(9): 4659-4670.
[62] LIU Y L, SHI H L, SI Y, et al. A high-efficiency framework for constructing large-scale face parsing benchmark[J]. arXiv:1905.04830, 2019.
[63] LI X L, YANG D W, WANG Y, et al. TCMINet: face parsing for traditional Chinese medicine inspection via a hybrid neural network with context aggregation[J]. IEEE Access, 2020, 8: 93069-93082.
[64] SHAO Y W. Research on intelligent tongue diagnosis based on deep learning[D]. Xiamen: Xiamen University, 2018.
邵尤伟. 基于深度学习的智能舌诊方法研究[D]. 厦门: 厦门大学, 2018.
[65] ZENG X Y, ZHANG Q, CHEN J, et al. Boundary guidance hierarchical network for real-time tongue segmentation[J]. arXiv:2003.06529, 2020.
[66] LI Y T, LUO Y S, ZHU Z M. Tongue image analysis in traditional Chinese medicine based on deep learning[J]. Computer Science, 2020, 47(11): 148-158.
李渊彤, 罗裕升, 朱珍民. 基于深度学习的舌象特征分析[J]. 计算机科学, 2020, 47(11): 148-158.
[67] YANG K Q, LI J D, LI X Q. Unsupervised tongue segmentation using reference labels[C]//LNCS 12532: Proceedings of the 27th International Conference on Neural Information Processing, Bangkok, Nov 23-27, 2020. Cham: Springer, 2020: 603-615.
[68] ZHOU C, FAN H Y, ZHAO W, et al. Reconstruction enhanced probabilistic model for semisupervised tongue image segmentation[J]. Concurrency and Computation: Practice and Experience, 2020, 32(22): e5844.
[69] BIOHIT. BioHit tongue dataset[EB/OL]. [2021-06-21]. https://github.com/BioHit/TongeImageDataset.
[70] GUI M J, ZHANG X F, HU G Q, et al. A study on tongue image color description based on label distribution learning[C]//Proceedings of the 8th International Conference on BioMedical Engineering and Informatics, Shenyang, Oct 14-16, 2015. Piscataway: IEEE, 2015: 148-152.
[71] KALAKE L, WAN W G, HOU L. Analysis based on recent deep learning approaches applied in real-time multi-object tracking: a review[J]. IEEE Access, 2021, 9: 32650-32671. |