[1] ZHU X C, TANG G J. Overview of visual quality assessment methods[J]. Journal of Nanjing University of Posts and Tele-communications (Natural Science Edition), 2018, 38(4): 1-11.
朱秀昌, 唐贵进. 可视质量评价方法综述[J]. 南京邮电大学学报(自然科学版), 2018, 38(4): 1-11.
[2] WANG Z M. Review of no-reference image quality assess-ment[J]. Acta Automatica Sinica, 2015, 41(6): 1062-1079.
王志明. 无参考图像质量评价综述[J]. 自动化学报, 2015, 41(6): 1062-1079.
[3] SUCHOW J W, ALVAREZ G A. Motion silences awareness of visual change[J]. Current Biology, 2011, 21(2): 140-143.
[4] SESHADRINATHAN K, BOVIK A C. Motion tuned spatio-temporal quality assessment of natural videos[J]. IEEE Trans-actions on Image Processing, 2010, 19(2): 335-350.
[5] VU P V, VU C T, CHANDLER D M. A spatiotemporal most-apparent-distortion model for video quality assessment[C]//Proceedings of the 18th IEEE International Conference on Image Processing, Brussels, Sep 11-14, 2011. Piscataway: IEEE, 2011: 2505-2508.
[6] TAGLIASACCHI M, VALENZISE G, NACCARI M, et al. A reduced-reference structural similarity approximation for videos corrupted by channel errors[J]. Multimedia Tools & Applications, 2010, 48(3): 471-492.
[7] XU J T, YE P, LIU Y, et al. No-reference video quality ass-essment via feature learning[C]//Proceedings of the 2014 IEEE International Conference on Image Processing, Paris, Oct 27-30, 2014. Piscataway: IEEE, 2014: 491-495.
[8] QIAN J S, WU D, Li L D, et al. Image quality assessment based on multi-scale representation of structure[J]. Digital Signal Processing, 2014, 33(3): 125-133.
[9] MOORTHY A K, BOVIK A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Pro-cessing Letters, 2010, 17(5): 513-516.
[10] MITTAL A, SAAD M, BOVIK A C. Assessment of video naturalness using time-frequency statistics[C]//Proceedings of the 2014 IEEE International Conference on Image Processing, Paris, Oct 27-30, 2014. Piscataway: IEEE, 2014: 571-574.
[11] SAAD M A, BOVIK A C, CHARRIER C. Blind prediction of natural video quality[J]. IEEE Transactions on Image Pro-cessing, 2014, 23(3): 1352-1365.
[12] GALKANDAGE C, CALIC J, DOGAN S, et al. Full-reference stereoscopic video quality assessment using a motion sensi-tive HVS model[J]. IEEE Transactions on Circuits and Sys-tems for Video Technology, 2020: 1-1.
[13] REDDY D S V, CHANNAPPAYYA S S. No-reference video quality assessment using natural spatiotemporal scene statis-tics[J]. IEEE Transactions on Image Processing, 2020, 29: 5612-5624.
[14] LE CALLET P, VIARD-GAUDIN C, BARBA D. A convolu-tional neural network approach for objective video quality assessment[J]. IEEE Transactions on Neural Networks, 2006, 17(5): 1316-1327.
[15] KANG L, YE P, LI Y, et al. Convolutional neural networks for no-reference image quality assessment[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 1733-1740.
[16] ZHANG Y, GAO X B, HE L H, et al. Objective video quality assessment combining transfer learning with CNN[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(8): 2716-2730.
[17] KIM W, KIM J, AHN S, et al. Deep video quality assessor: from spatio-temporal visual sensitivity to a convolutional neural aggregation network[C]//LNCS 11205: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 224-241.
[18] VINYALS O, BENGIO S, KUDLUR M. Order matters: se-quence to sequence for sets[J]. arXiv:1511.06391, 2015.
[19] YANG J L, REN P R, ZHANG D Q, et al. Neural aggreg-ation network for video face recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5216-5225.
[20] XU M N, CHEN J M, WANG H Q, et al. C3DVQA: full-reference video quality assessment with 3D convolutional neural network[C]//Proceedings of the 2020 IEEE Inter-national Conference on Acoustics, Speech and Signal Pro-cessing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 4447-4451.
[21] LI Y D, HE H M, ZHANG Z X. Human motion quality assess-ment toward sophisticated sports scenes based on deeply-learned 3D CNN model[J]. Journal of Visual Communication and Image Representation, 2020, 71: 102702.
[22] LI Y M, PO L M, CHEUNG C H, et al. No-reference video quality assessment with 3D shearlet transform and convo-lutional neural networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(6): 1044-1057.
[23] LI Y M, PO L M, XU X Y, et al. No-reference image quality assessment using statistical characterization in the shearlet domain[J]. Signal Processing: Image Communication, 2014, 29(7): 748-759.
[24] WANG C, SU L, HUANG Q. CNN-MR for no reference video quality assessment[C]//Proceedings of the 4th Inter-national Conference on Information Science and Control Engineering, Changsha, Jul 21-23, 2017. Piscataway: IEEE, 2017: 224-228.
[25] AHN S, LEE S. Deep blind video quality assessment based on temporal human perception[C]//Proceedings of the 2018 25th IEEE International Conference on Image Processing, Athens, Oct 7-10, 2018. Piscataway: IEEE, 2018: 619-623.
[26] VARGA D. No-reference video quality assessment based on the temporal pooling of deep features[J]. Neural Processing Letters, 2019, 50: 2595-2608.
[27] ZHANG Y, GAO X B, He L H, et al. Blind video quality assessment with weakly supervised learning and resampling strategy[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(8): 2244-2255.
[28] UTKE M, ZADTOOTAGHAJ S, SCHMIDT S, et al. NDNet-Gaming-development of a no-reference deep CNN for gaming video quality prediction[J]. Multimedia Tools and Appli-cations, 2020: 1-23.
[29] Netflix. VMAF-video multi-method assessment fusion[EB/OL]. (2018-10-02) [2020-09-01]. https://github.com/netflix/vmaf.
[30] RASSOOL R. VMAF reproducibility: validating a perceptual practical video quality metric[C]//Proceedings of the 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Cagliari, Jun 7-9, 2017. Piscat-away: IEEE, 2017: 1-2.
[31] SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
[32] LI S N, ZHANG F, MA L, et al. Image quality assessment by separately evaluating detail losses and additive impair-ments[J]. IEEE Transactions on Multimedia, 2011, 13(5): 935-949.
[33] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recog-nition, Honolulu, Jul 21-26, 2017. Washington: IEEE Com-puter Society, 2017: 2261-2269.
[34] VARGA D, SZIRáNYI T. No-reference video quality assess-ment via pretrained CNN and LSTM networks[J]. Signal, Image and Video Processing, 2019, 13(8): 1569-1576.
[35] HOSU V, HAHN F, JENADELEH M, et al. The Konstanz natural video database (KoNViD-1k)[C]//Proceedings of the 9th International Conference on Quality of Multimedia Experi-ence, Erfurt, May 31-Jun 2, 2017. Piscataway: IEEE, 2017: 1-6.
[36] LI D Q, JIANG T T, JIANG M. Quality assessment of in-the-wild videos[C]//Proceedings of the 27th ACM International Conference on Multimedia, Nice, Oct 21-25, 2019. New York: ACM, 2019: 2351-2359.
[37] TRAN D, BOURDEV L D, FERGUS R, et al. Learning spatio-temporal features with 3D convolutional networks[C]//Pro-ceedings of the 2015 IEEE International Conference on Com-puter Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 4489-4497.
[38] LIU W T, DUANMU Z F, WANG Z. End-to-end blind quality assessment of compressed videos using deep neural networks[C]//Proceedings?of?the 2018 ACM Multimedia Conference,Seoul, Oct 22-26, 2018. New York: ACM, 2018: 546-554.
[39] MA K D, LIU W T, ZHANG K, et al. End-to-end blind image quality assessment using deep neural networks[J]. IEEE Trans-actions on Image Processing, 2018, 27(3): 1202-1213.
[40] HOU R, ZHAO Y H, HU Y, et al. No-reference video quality evaluation by a deep transfer CNN architecture[J]. Signal Processing: Image Communication, 2020, 83: 115782.
[41] YANG J C, ZHU Y H, MA C F, et al. Stereoscopic video quality assessment based on 3D convolutional neural net-works[J]. Neurocomputing, 2018, 309: 83-93.
[42] YANG J C, LIU T L, JIANG B, et al. 3D panoramic virtual reality video quality assessment based on 3D convolutional neural networks[J].?IEEE Access, 2018, 6: 38669-38682.
[43] WU P, DING W X, YOU Z X, et al. Virtual reality video quality assessment based on 3d convolutional neural net-works[C]//Proceedings of the 2019 IEEE International Con-ference on Image Processing, Taipei, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 3187-3191.
[44] SESHADRINATHAN K, SOUNDARARAJAN R, BOVIK A C, et al. Study of subjective and objective quality assess-ment of video[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1427-1441.
[45] VU P V, CHANDLER D M. ViS3: an algorithm for video quality assessment via analysis of spatial and spatiotemporal slices[J]. Journal of Electronic Imaging, 2014, 23(1): 013016.
[46] ZHANG F, LI S N, MA L, et al. IVP subjective quality video database[EB/OL]. [2020-09-01]. http://ivp.ee.cuhk.edu.hk/research/database/subjective/.
[47] CORBILLON X, DE SIMONE F, SIMON G. 360-degree video head movement dataset[C]//Proceedings of the 8th ACM on Multimedia Systems Conference, Taipei, China, Jun 20-23, 2017. New York: ACM, 2017: 199-204.
[48] WU C L, TAN Z H, WANG Z, et al. A dataset for exploring user behaviors in VR spherical video streaming[C]//Proceed-ings of the 8th ACM on Multimedia Systems Conference, Taipei, China, Jun 20-23, 2017. New York: ACM, 2017: 193-198.
[49] DAVID E J, GUTIéRREZ J, COUTROT A, et al. A dataset of head and eye movements for 360°videos[C]//Proceedings of the 9th ACM Multimedia Systems Conference, Amsterdam, Jun 12-15, 2018. New York: ACM, 2018: 432-437.
[50] CHANDLER D M, HEMAMI S S. VSNR: a wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298.
[51] MASRY M A, HEMAMI S S. A metric for continuous quality evaluation of compressed video with severe distortions[J]. Signal Processing: Image Communication, 2004, 19(2): 133-146.
[52] URVOY M, BARKOWSKY M, COUSSEAU R, et al. NAMA3DS1-COSPAD1: subjective video quality assessment database on coding conditions introducing freely available high quality 3D stereoscopic sequences[C]//Proceedings of the 4th International Workshop on Quality of Multimedia Experience, Yarra Valley, Jul 5-7, 2012. Piscataway: IEEE,2012: 109-114 .
[53] LIN J Y, SONG R, WU C H, et al. MCL-V: a streaming video quality assessment database[J]. Journal of Visual Com-munication and Image Representation, 2015, 30: 1-9.
[54] LI C, XU M, DU X Z, et al. Bridge the gap between VQA and human behavior on omnidirectional video: a large-scale dataset and a deep learning model[C]//Proceedings of?the?2018 ACM Multimedia Conference, Seoul, Oct 22, 2018. New York: ACM, 2018: 932-940.
[55] LIU L X, WANG T S, HUANG H, et al. Video quality assess-ment using space-time slice mappings[J]. Signal Processing: Image Communication, 2020, 82: 115749.
[56] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[57] SHEIKH H R, BOVIK A C, DE VECIANA G. An infor-mation fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Pro-cessing, 2005, 14(12): 2117-2128.
[58] NGO C W, PONG T C, ZHANG H J. Motion analysis and segmentation through spatio-temporal slices processing[J]. IEEE Transactions on Image Processing, 2003, 12(3): 341-355.
[59] FANG Y M, YAN J B, LI L D, et al. No reference quality assessment for screen content images with both local and global feature representation[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1600-1610.
[60] MA J P, WU J J, LI L D, et al. Active inference of GAN for no-reference image quality assessment[C]//Proceedings of the 2020 IEEE International Conference on Multimedia and Expo, London, Jul 6-10, 2020. Piscataway: IEEE, 2020: 1-6.
[61] BONGINI P, CHIARO R D, BAGDANOV A D, et al. GADA: generative adversarial data augmentation for image quality assessment[C]//LNCS 11752: Proceedings of the 20th Inter-national Conference on Image Analysis and Processing,Trento, Sep 9-13, 2019. Berlin, Heidelberg: Springer, 2019: 214-224.
[62] FANG Y M, WANG J B,WANG J H. No reference quality assessment for stereoscopic images by statistical features [C]//Proceedings of the 9th International Conference on Quality of Multimedia Experience, Erfurt, May 31-Jun 2, 2017. Piscat-away: IEEE, 2017: 1-6.
[63] MITTAL A, MOORTHY A K, BOVIK A C. No-reference im-age quality assessment in the spatial domain[J]. IEEE Trans-actions on Image Processing, 2012, 21(12): 4695-4708.
[64] GAO X B, GAO F, TAO D C, et al. Universal blind image quality assessment metrics via natural scene statistics and multiple kernel learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 24(12): 2013-2026.
[65] YE P, KUMAR J, DOERMANN D S. Beyond human opinion scores: blind image quality assessment based on synthetic scores[C]//Proceedings of the 2014 IEEE Conference on Com-puter Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 4241-4248.
[66] WU Q B, LI H L, MENG F M, et al. Blind image quality assessment based on multichannel feature fusion and label transfer[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(3): 425-440.
[67] YANG L, WANG H, WEI M. No-reference image quality assessment based on machine learning[J]. Computer Engi-neering and Applications, 2018, 54(19): 34-42.
杨璐, 王辉, 魏敏. 基于机器学习的无参考图像质量评价综述[J]. 计算机工程与应用, 2018, 54(19): 34-42.
[68] ZHANG Y, JIN W Q. Assessment method of fusion image quality in wavelet domain structural similarity[J]. Cinese Journal of Lasers, 2012, 39(S1): 109007.
[69] KIM J, LEE S. Deep learning of human visual sensitivity in image quality assessment framework[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1969-1977.
[70] ZHANG W X, MA K D, YAN J, et al. Blind image quality assessment using a deep bilinear convolutional neural net-work[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(1): 36-47.
[71] CHETOUANI A. Image quality assessment without reference by mixing deep learning-based features[C]//Proceedings of the 2020 IEEE International Conference on Multimedia and Expo, London, Jul 6-10, 2020. Piscataway: IEEE, 2020: 1-6.
[72] KIM H G, LIM H, RO Y M. Deep virtual reality image quality assessment with human perception guider for omnidirec-tional image[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(4): 917-928.
[73] LIM H, KIM H G, RA Y M. VR IQA NET: deep virtual reality image quality assessment using adversarial learning[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Apr 15-20, 2018. Piscataway: IEEE, 2018: 6737-6741.
[74] QI F, ZHAO D B, FAN X P, et al. Stereoscopic video quality assessment based on visual attention and just-noticeable dif-ference models[J]. Signal Image & Video Processing, 2016, 10(4): 737-744.
[75] DING X D, LI S M, MA R Z, et al. Objective assessment method for stereo video quality[J]. Acta Scientiarum Natura-lium Universitatis Nankaiensis, 2018, 51(5): 37-43.
丁学东, 李素梅, 马瑞泽, 等. 立体视频质量客观评价方法研究[J]. 南开大学学报(自然科学版), 2018, 51(5): 37-43.
[76] ORDUNA M, DíAZ C, MU?OZ L, et al. Video multimethod assessment fusion (VMAF) on 360VR contents[J]. IEEE Transactions on Consumer Electronics, 2020, 66(1): 22-31.
[77] LI C, XU M, JIANG L, et al. Viewport proposal CNN for 360° video quality assessment[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-nition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 10177-10186.
[78] ORDUNA M, PéREZ P, DíAZ C, et al. Evaluating the influence of the HMD, usability, and fatigue in 360VR video quality assessments[C]//Proceedings of the 2020 IEEE Con-ference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, Atlanta, Mar 22-26, 2020. Piscataway: IEEE, 2020: 683-684.
[79] XU M, LI C, ZHANG S Y, et al. State-of-the-art in 360° video/image processing: perception, assessment and compression[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(1): 5-26.
[80] KIM J, KIM W, AHN S, et al. Virtual reality sickness pre-dictor: analysis of visual-vestibular conflict and VR contents[C]//Proceedings of the 2018 10th International Conference on Quality of Multimedia Experience, Cagliari, May 29-Jun 1, 2018. Piscataway: IEEE, 2018: 1-6.
[81] MIN X K, ZHAI G T, ZHOU J T, et al. Study of subjective and objective quality assessment of audio-visual signals[J]. IEEE Transactions on Image Processing, 2020, 29: 6054-6068.
[82] BAMPIS C G, LI Z, BOVIK A C. Spatiotemporal feature integration and model fusion for full reference video quality assessment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(8): 2256-2270. |