计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (3): 669-682.DOI: 10.3778/j.issn.1673-9418.2009091
收稿日期:
2020-09-01
修回日期:
2020-10-20
出版日期:
2022-03-01
发布日期:
2020-10-23
通讯作者:
+ E-mail: sherryliu08@foxmail.com作者简介:
姜艺(1974—),女,上海人,硕士,副教授,主要研究方向为人工智能、机制设计、图像处理等。基金资助:
JIANG Yi1,2, XU Jiajie1, LIU Xu1,+(), ZHU Junwu1
Received:
2020-09-01
Revised:
2020-10-20
Online:
2022-03-01
Published:
2020-10-23
About author:
JIANG Yi, born in 1974, M.S., associate professor. Her research interests include artificial intelligence, mechanism design, image processing, etc.Supported by:
摘要:
近年来,深度学习技术的不断发展为图像修复研究提供了新的思路,通过对海量图像数据的学习,使得图像修复方法能够理解图像的语义信息。虽然现有的图像修复方法已能够生成较好的图像修复结果,但遇到结构缺失较为复杂的图像时,对缺失部分细节处理能力较差,所生成的结果会过度平滑或模糊,不能很好地修复图像缺失的复杂结构信息。针对此问题,基于生成对抗网络技术提出了一种边缘指导图像修复的方法和对应算法,将图像修复工作分为两部分:首先训练边缘修复模型生成较为真实的缺失区域的边缘信息,再根据已修复好的边缘信息,训练内容生成模型填充缺失部分的内容信息。最后所提方法在CelebA数据集和ParisStreet-View数据集上与Shift-Net模型、深度图样先验(DIP)模型以及FFM模型进行了对比实验验证,并对实验修复结果进行了视觉上的定性分析和定量指标分析。实验结果证明提出的方法相对现有方法能更好地修复图像中缺失的复杂结构信息,反映出边缘信息在图像修复过程中具有重要的作用。
中图分类号:
姜艺, 胥加洁, 柳絮, 朱俊武. 边缘指导图像修复算法研究[J]. 计算机科学与探索, 2022, 16(3): 669-682.
JIANG Yi, XU Jiajie, LIU Xu, ZHU Junwu. Research on Edge-Guided Image Repair Algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 669-682.
模型 | CelebA | ParisStreet-View | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
Shift-Net | 24.64 | 0.92 | 26.94 | 0.90 |
DIP | 23.50 | 0.89 | 24.34 | 0.87 |
FFM | 22.59 | 0.92 | 24.66 | 0.88 |
Proposed | 26.76 | 0.93 | 27.56 | 0.92 |
表1 不同数据集上规则掩膜修复结果对比
Table 1 Regular mask repair results comparison on different datasets
模型 | CelebA | ParisStreet-View | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
Shift-Net | 24.64 | 0.92 | 26.94 | 0.90 |
DIP | 23.50 | 0.89 | 24.34 | 0.87 |
FFM | 22.59 | 0.92 | 24.66 | 0.88 |
Proposed | 26.76 | 0.93 | 27.56 | 0.92 |
模型 | CelebA | ParisStreet-View | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
Shift-Net | 23.20 | 0.86 | 20.40 | 0.71 |
DIP | 21.90 | 0.83 | 18.48 | 0.63 |
FFM | 20.43 | 0.84 | 18.71 | 0.70 |
Proposed | 24.98 | 0.88 | 20.73 | 0.73 |
表2 不同数据集上不规则掩膜修复结果对比
Table 2 Irregular mask repair results comparison on different datasets
模型 | CelebA | ParisStreet-View | ||
---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | |
Shift-Net | 23.20 | 0.86 | 20.40 | 0.71 |
DIP | 21.90 | 0.83 | 18.48 | 0.63 |
FFM | 20.43 | 0.84 | 18.71 | 0.70 |
Proposed | 24.98 | 0.88 | 20.73 | 0.73 |
[1] | BERTALMÍO M, SAPIRO G, CASELLES V, et al. Image inpainting[C]// Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, Jul 23-28, 2000. New York: ACM, 2000: 417-424. |
[2] |
SHEN J H, CHAN T F. Mathematical models for local non-texture inpaintings[J]. SIAM Journal on Applied Mathematics, 2002, 62(3): 1019-1043.
DOI URL |
[3] |
CHAN T F, SHEN J H. Nontexture inpainting by curvature-driven diffusions[J]. Journal of Visual Communication and Image Representation, 2001, 12(4): 436-449.
DOI URL |
[4] |
TSAI A, YEZZI A J, WILLSKY A S. Curve evolution imple-mentation of the Mumford-Shah functional for image segmenta-tion, denoising, interpolation, and magnification[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1169-1186.
DOI URL |
[5] |
SHEN J H, KANG S H, CHAN T F. Euler’s elastica and curvature-based inpainting[J]. SIAM Journal of Applied Mathematics, 2003, 63(2): 564-592.
DOI URL |
[6] | ESEDOGLU S, SHEN J. Digital inpainting based on the Mumford-Shah-Euler image model[J]. European Journal of Applied Mathematics, 2002, 13(4): 353-370. |
[7] | BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: a randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 2009, 28(3): 24. |
[8] | DARABI S, SHECHTMAN E, BARNES C, et al. Image melding: combining inconsistent images using patch-based synjournal[J]. ACM Transactions on Graphics, 2012, 31(4): 82. |
[9] | ULYANOV D, VEDALDI A, LEMPITSKY V S. Deep image prior[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 9446-9454. |
[10] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3: 2672-2680. |
[11] | LIU G L, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C]// LNCS 11215:Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 89-105. |
[12] |
BALLESTER C, BERTALMÍO M, CASELLES V, et al. Filling-in by joint interpolation of vector fields and gray levels[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1200-1211.
DOI URL |
[13] | 张桂梅, 李艳兵. 结合纹理结构的分数阶TV模型的图像修复[J]. 中国图象图形学报, 2019, 24(5): 700-713. |
ZHANG G M, LI Y B. Image inpainting of fractional TV model combined with texture structure[J]. Journal of Image and Graphics, 2019, 24(5): 700-713. | |
[14] |
许刚, 马爽. 动态尺度块匹配约束下的链式优化图像修复研究[J]. 电子学报, 2015, 43(3): 529-535.
DOI |
XU G, MA S. Image completion using dynamic-scale patch matching and layer-wise chain optimization[J]. Acta Electronica Sinica, 2015, 43(3): 529-535. | |
[15] | 高成英, 徐仙儿, 罗燕媚, 等. 基于稀疏表示的物体图像修复[J]. 计算机学报, 2019, 42(9): 1953-1965. |
GAO C Y, XU X E, LUO Y M, et al. Object image inpainting based on sparse representation[J]. Chinese Journal of Computers, 2019, 42(9): 1953-1965. | |
[16] | PATHAK D, KRÄHENBÜHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2536-2544. |
[17] | IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14. |
[18] | SONG Y H, CHAO Y, SHEN Y J, et al. SPG-Net: segmenta-tion prediction and guidance network for image inpainting[C]// Proceedings of the 2018 British Machine Vision Conference, Newcastle, Sep 3-6, 2018. Durham: BMVA Press, 2018: 97. |
[19] | YANG C, LU X, LIN Z, et al. High-resolution image inpainting using multi-scale neural patch synconfproc[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4076-4084. |
[20] | YEH R A, CHEN C, LIM T Y, et al. Semantic image inpainting with deep generative models[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6882-6890. |
[21] | LI Y J, LIU S F, YANG J M, et al. Generative face complet-ion[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5892-5900. |
[22] | DEMIR U, ÜNAL G B. Patch-based image inpainting with generative adversarial networks[J]. arXiv:1803.07422, 2018. |
[23] | LIU Z W, LUO P, WANG X G, et al. Deep learning face attributes in the wild[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 3730-3738. |
[24] | DOERSCH C, SINGH S, GUPTA A, et al. What makes Paris look like Paris[J]. Communications of the ACM, 2015, 58(12): 103-110. |
[25] |
PÉREZ P, GANGNET M, BLAKE A, et al. Poisson image editing[J]. ACM Transactions on Graphics, 2003, 22(3): 313-318.
DOI URL |
[26] | ZEILER M D. Adadelta: an adaptive learning rate method[J]. arXiv:1212.5701, 2012. |
[27] | YAN Z Y, LI X M, LI M, et al. Shift-Net: image inpainting via deep feature rearrangement[C]// LNCS 11218: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19. |
[28] |
TELEA A C. An image inpainting technique based on the fast marching method[J]. Journal of Graphics Tools, 2004, 9(1): 23-34.
DOI URL |
[1] | 安凤平, 李晓薇, 曹翔. 权重初始化-滑动窗口CNN的医学图像分类[J]. 计算机科学与探索, 2022, 16(8): 1885-1897. |
[2] | 曾凡智, 许露倩, 周燕, 周月霞, 廖俊玮. 面向智慧教育的知识追踪模型研究综述[J]. 计算机科学与探索, 2022, 16(8): 1742-1763. |
[3] | 刘艺, 李蒙蒙, 郑奇斌, 秦伟, 任小广. 视频目标跟踪算法综述[J]. 计算机科学与探索, 2022, 16(7): 1504-1515. |
[4] | 赵小明, 杨轶娇, 张石清. 面向深度学习的多模态情感识别研究进展[J]. 计算机科学与探索, 2022, 16(7): 1479-1503. |
[5] | 夏鸿斌, 肖奕飞, 刘渊. 融合自注意力机制的长文本生成对抗网络模型[J]. 计算机科学与探索, 2022, 16(7): 1603-1610. |
[6] | 孙方伟, 李承阳, 谢永强, 李忠博, 杨才东, 齐锦. 深度学习应用于遮挡目标检测算法综述[J]. 计算机科学与探索, 2022, 16(6): 1243-1259. |
[7] | 刘雅芬, 郑艺峰, 江铃燚, 李国和, 张文杰. 深度半监督学习中伪标签方法综述[J]. 计算机科学与探索, 2022, 16(6): 1279-1290. |
[8] | 申瑞彩, 翟俊海, 侯璎真. 选择性集成学习多判别器生成对抗网络[J]. 计算机科学与探索, 2022, 16(6): 1429-1438. |
[9] | 林佳伟, 王士同. 用于无监督域适应的深度对抗重构分类网络[J]. 计算机科学与探索, 2022, 16(5): 1107-1116. |
[10] | 程卫月, 张雪琴, 林克正, 李骜. 融合全局与局部特征的深度卷积神经网络算法[J]. 计算机科学与探索, 2022, 16(5): 1146-1154. |
[11] | 钟梦圆, 姜麟. 超分辨率图像重建算法综述[J]. 计算机科学与探索, 2022, 16(5): 972-990. |
[12] | 裴利沈, 赵雪专. 群体行为识别深度学习方法研究综述[J]. 计算机科学与探索, 2022, 16(4): 775-790. |
[13] | 许嘉, 韦婷婷, 于戈, 黄欣悦, 吕品. 题目难度评估方法研究综述[J]. 计算机科学与探索, 2022, 16(4): 734-759. |
[14] | 朱伟杰, 陈莹. 双流时间域信息交互的微表情识别卷积网络[J]. 计算机科学与探索, 2022, 16(4): 950-958. |
[15] | 张全贵, 胡嘉燕, 王丽. 耦合用户公共特征的单类协同过滤推荐算法[J]. 计算机科学与探索, 2022, 16(3): 637-648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||