[1] |
郑宇. 城市计算概述[J]. 武汉大学学报(信息科学版), 2015, 40(1):1-13.
|
|
ZHENG Y. Introduction to urban computing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):1-13.
|
[2] |
HAMED M M, AL-MASAEID H R, SAID Z M B. Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121(3):249-254.
DOI
URL
|
[3] |
HOANG M X, ZHENG Y, SINGH A K. FCCF: forecasting citywide crowd flows based on big data[C]// Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, Oct 31 - Nov 3, 2016. New York: ACM, 2016: 1-10.
|
[4] |
LI Y X, ZHENG Y, ZHANG H C, et al. Traffic prediction in a bike-sharing system[C]// Proceedings of the 23rd SIG-SPATIAL International Conference on Advances in Geographic Information Systems, Bellevue, Nov 3-6, 2015. New York: ACM, 2015: 1-10.
|
[5] |
LV Y S, DUAN Y J, KANG W W, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):865-873.
|
[6] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
DOI
URL
|
[7] |
CHO K, MERRIËNBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv: 1406. 1078, 2014.
|
[8] |
YU R, LI Y G, SHAHABI C, et al. Deep learning: a generic approach for extreme condition traffic forecasting[C]// Proceedings of the 2017 SIAM International Conference on Data Mining, Houston, Apr 27-29, 2017. Philadelphia: SIAM, 2017: 777-785.
|
[9] |
YUAN N J, ZHENG Y, XIE X, et al. Discovering urban functional zones using latent activity trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(3):712-725.
DOI
URL
|
[10] |
ZHANG J B, ZHENG Y, QI D K, et al. DNN-based prediction model for spatio-temporal data[C]// Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, Oct 31-Nov 3, 2016. New York: ACM, 2016: 1-4.
|
[11] |
KE J T, ZHENG H Y, YANG H, et al. Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach[J]. Transportation Research Part C: Emerging Technologies, 2017, 85:591-608.
DOI
URL
|
[12] |
ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 1655-1661.
|
[13] |
ZHANG J B, ZHENG Y, SUN J K, et al. Flow prediction in spatio-temporal networks based on multitask deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(3):468-478.
DOI
URL
|
[14] |
LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[J]. arXiv: 1707. 01926, 2017.
|
[15] |
CHAI D, WANG L Y, YANG Q. Bike flow prediction with multi-graph convolutional networks[C]// Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, Nov 6-9, 2018. New York: ACM, 2018: 397-400.
|
[16] |
GENG X, LI Y G, WANG L Y, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3656-3663.
|
[17] |
冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3):759-769.
|
|
FENG N, GUO S N, SONG C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30(3):759-769.
|
[18] |
LIANG Y X, KE S Y, ZHANG J B, et al. GeoMAN: multi-level attention networks for geo-sensory time series prediction[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3428-3434.
|
[19] |
ZHANG J N, SHI X J, XIE J Y, et al. GaAN: gated attention networks for learning on large and spatiotemporal graphs[J]. arXiv: 1803. 07294, 2018.
|
[20] |
WANG X Y, MA Y, WANG Y Q, et al. Traffic flow prediction via spatial temporal graph neural network[C]// Proceedings of the Web Conference 2020, Taiwan, China, Apr 20-24, 2020. New York: ACM, 2020: 1082-1092.
|
[21] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
|
[22] |
ABADI M, BARHAM P, CHEN J M, et al. TensorFlow: a system for large-scale machine learning[C]// Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, Savannah, Nov 2-4, 2016. Berkeley: USENIX Association, 2016: 265-283.
|
[23] |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 3837-3845.
|
[24] |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree Boosting system[C]// Proceedings of the 22nd ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 785-794.
|
[25] |
WANG L Y, CHAI D, LIU X Z, et al. Exploring the generalizability of spatio-temporal crowd flow prediction: meta-modeling and an analytic framework[J]. arXiv: 2009. 09379, 2020.
|
[26] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv: 1710. 10903, 2017.
|