[1] AMODIO A, ERMIDORO M, MAGGI D, et al. Automatic detection of driver impairment based on pupillary light reflex[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3038-3048.
[2] ZHENG W L, GAO K P, LI G, et al. Vigilance estimation using a wearable EOG device in real driving environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 170-184.
[3] ZHU M, CHEN J, LI H, et al. Vehicle driver drowsiness detection method using wearable EEG based on convolu-tion neural network[J]. Neural Computing & Applications, 2021, 33(20): 13965-13980.
[4] AREFNEZHAD S, SAMIEE S, EICHBERGER A, et al. Applying deep neural networks for multi-level classification of driver drowsiness using vehicle-based measures[J]. Expert Systems with Applications, 2020, 162(1): 113778.
[5] JEON Y, KIM B, BAEK Y. Ensemble CNN to detect drowsy driving with in-vehicle sensor data[J]. Sensors, 2021, 21(7): 2372.
[6] MUHAMMAD R, KHAN H U, AWAN S M, et al. A survey on state-of-the-art drowsiness detection techniques[J]. IEEE Access, 2019, 7: 61904-61919.
[7] KAMRAN M A, MANNAN M M N, JEONG M Y. Drow-siness, fatigue and poor sleep’s causes and detection: a com-prehensive study[J]. IEEE Access, 2019, 7: 167172-167186.
[8] 张佐营, 叶桂荀. 驾驶疲劳监测技术研究综述[J]. 汽车科技, 2022(1): 8-14.
ZHANG Z Y, YE G X. Review on driving fatigue detection[J]. Automobile Science & Technology, 2022(1): 8-14.
[9] ARAKAWA T. Trends and future prospects of the drowsi-ness detection and estimation technology[J]. Sensors, 2021, 21(23): 7921.
[10] 张瑞, 朱天军, 邹志亮, 等. 驾驶员疲劳驾驶检测方法研究综述[J]. 计算机工程与应用, 2022, 58(21): 53-66.
ZHANG R, ZHU T J, ZOU Z L, et al. Review of research on driver fatigue driving detection methods[J]. Computer Engineering and Applications, 2022, 58(21): 53-66.
[11] NEMCOVA A, SVOZILOVA V, BUCSUHAZY K, et al. Multimodal features for detection of driver stress and fati-gue: review[J]. IEEE Transactions on Intelligent Transporta-tion Systems, 2021, 22(6): 3214-3233.
[12] LI K, GONG Y, REN Z. A fatigue driving detection algori-thm based on facial multi-feature fusion[J]. IEEE Access, 2020, 8: 101244-101259.
[13] 史瑞鹏, 钱屹, 蒋丹妮. 一种基于卷积神经网络的疲劳驾驶检测方法[J]. 计算机应用研究, 2020, 37(11): 3481-3486.
SHI R P, QIAN Y, JIANG D N. Fatigue driving detection method based on CNN[J]. Application Research of Compu-ters, 2020, 37(11): 3481-3486.
[14] BAKKER B, ZABLOCKI B, BAKER A, et al. A multi-stage, multi-feature machine learning approach to detect driver sleepiness in naturalistic road driving conditions[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(5): 1-10.
[15] 冯文文, 曹银杰, 李晓琳, 等. 基于改进的深度卷积神经网络的人脸疲劳检测[J]. 科学技术与工程, 2020, 20(14): 5680-5687.
FENG W W, CAO Y J, LI X L, et al. Face fatigue detection based on improved deep convolutional neural network[J]. Science Technology and Engineering, 2020, 20(14): 5680-5687.
[16] ZHANG C, WU X P, ZHENG X, et al. Driver drowsiness detection using multi-channel second order blind identifica-tions[J]. IEEE Access, 2019, 7: 11829-11843.
[17] 潘志庚, 刘荣飞, 张明敏. 基于模糊综合评价的疲劳驾驶检测算法研究[J]. 软件学报, 2019, 30(10): 2954-2963.
PAN Z G, LIU R F, ZHANG M M. Research on fatigue driving detection algorithm based on fuzzy comprehensive evaluation[J]. Journal of Software, 2019, 30(10): 2954-2963.
[18] JI Y Y, WANG S G, ZHAO Y, et al. Fatigue state detection based on multi-index fusion and state recognition network[J]. IEEE Access, 2019, 7: 64136-64147.
[19] 董超俊, 林庚华, 吴承鑫, 等. 基于卷积专家神经网络的疲劳驾驶检测[J]. 计算机工程与设计, 2020, 41(10): 2812-2817.
DONG C J, LIN G H, WU C X, et al. Fatigue driving detection based on convolution expert neural network[J]. Computer Engineering and Design, 2020, 41(10): 2812-2817.
[20] 徐莲, 任小洪, 陈闰雪. 基于眼睛状态识别的疲劳驾驶检测[J]. 科学技术与工程, 2020, 20(20): 8292-8299.
XU L, REN X H, CHEN R X. Fatigue driving detection based on eye state recognition[J]. Science Technology and Engineering, 2020, 20(20): 8292-8299.
[21] LING Y C, LUO R, DONG X, et al. Driver eye location and state estimation based on a robust model and data augmen-tation[J]. IEEE Access, 2021, 9: 67219-67231.
[22] 陆荣秀, 张笔豪, 莫振龙. 基于脸部特征和头部姿态的疲劳检测方法[J]. 系统仿真学报, 2022, 34(10): 2279-2292.
LU R X, ZHANG B H, MO Z L. Fatigue detection method based on facial features and head posture[J]. Journal of System Simulation, 2022, 34(10): 2279-2292.
[23] 胡习之, 黄冰瑜. 基于面部特征分析的疲劳驾驶检测方法[J]. 科学技术与工程, 2021, 21(4): 1629-1636.
HU X Z, HUANG B Y. Fatigue driving detection system based on face feature analysis[J]. Science Technology and Engineering, 2021, 21(4): 1629-1636.
[24] 娄平, 杨欣, 胡辑伟, 等. 基于边缘计算的疲劳驾驶检测方法[J]. 计算机工程, 2021, 47(7): 13-20.
LOU P, YANG X, HU J W, et al. Fatigue driving detection method based on edge computing[J]. Computer Enginee-ring, 2021, 47(7): 13-20.
[25] 潘剑凯, 柳政卿, 王秋成. 基于眼部自商图-梯度图共生矩阵的疲劳驾驶检测[J]. 中国图象图形学报, 2021, 26(1): 154-164.
PAN J K, LIU Z Q, WANG Q C. Fatigue driving detection based on ocular self-quotient image and gradient image co-occurrence matrix[J]. Journal of Image and Graphics, 2021, 26(1): 154-164.
[26] 庄员, 戚湧. 伪3D卷积神经网络与注意力机制结合的疲劳驾驶检测[J]. 中国图象图形学报, 2021, 26(1): 143-153.
ZHUANG Y, QI Y. Driving fatigue detection based on pseudo 3D convolutional neural network and attention mec-hanisms[J]. Journal of Image and Graphics, 2021, 26(1): 143-153.
[27] YANG H, LIU L, MIN W D, et al. Driver yawning detection based on subtle facial action recognition[J]. IEEE Transac-tions on Multimedia, 2021, 23: 572-583.
[28] 敖邦乾, 杨莎, 令狐金卿, 等. 基于级联神经网络疲劳驾驶检测系统设计[J]. 系统仿真学报, 2022, 34(2): 323-333.
AO B Q, YANG S, LINGHU J Q, et al. Design of fatigue driving detection system based on cascaded neural network[J]. Journal of System Simulation, 2022, 34(2): 323-333.
[29] HUANG R, WANG Y, LI Z J, et al. RF-DCM: multi-granu-larity deep convolutional model based on feature recalibra-tion and fusion for driver fatigue detection[J]. IEEE Tran-sactions on Intelligent Transportation Systems, 2022, 23(1): 630-640.
[30] SONG F Y, TAN X Y, LIU X, et al. Eyes closeness detec-tion from still images with multi-scale histograms of princi-pal oriented gradients[J]. Pattern Recognition, 2014, 47(9): 2825-2838.
[31] FUSEK R. Pupil localization using geodesic distance[C]//LNCS 11241: Proceedings of the International Symposium on Visual Computing, Las Vegas, Nov 19-21, 2018: 433-444.
[32] ABTAHI S, OMIDYEGANEH M, SHIRMOHAMMADI S, et al. YawDD: a yawning detection dataset[C]//Proceedings of the 5th ACM Multimedia Systems Conference, Singa-pore, Mar 19-21, 2014. New York: ACM, 2014: 24-28.
[33] WENG C H, LAI Y H, LAI S H. Driver drowsiness detec-tion via a hierarchical temporal deep belief network[C]//LNCS 10118: Proceedings of the 2016 International Work-shops on Computer Vision, Taipei, China, Nov 20-24, 2016. Cham: Springer, 2016: 117-133.
[34] GHODDOOSIAN R, GALIB M, ATHITSOS V. A realistic dataset and baseline temporal model for early drowsiness detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 178-187.
[35] BRADSKI G. The OpenCV library[J]. Doctor Dobbs Journal, 2000: 25.
[36] VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154.
[37] KING D E. Dlib-ml: a machine learning toolkit[J]. Journal of Machine Learning Research, 2009, 10(3): 1755-1758.
[38] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Com-puter Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-25, 2005. Washington: IEEE Computer Society, 2005: 886-893.
[39] LIU W, ANGUELOV D, ERHAND, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[40] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
[41] SOUKUPOVA T, CECH J. Real-time eye blink detection using facial landmarks[C]//Proceedings of the 21st Com-puter Vision Winter Workshop, Rimske Toplice, Feb 3-5, 2016.
[42] RAMOS A L A, ERANDIO J C, MANGILAVA D H T, et al. Driver drowsiness detection based on eye movement and yawning using facial landmark analysis[J]. Internatio-nal Journal of Simulation: Systems, Science and Techno-logy, 2019, 20: 371-378.
[43] KONG X J, XIA F, LI J X, et al. A shared bus profiling scheme for smart cities based on heterogeneous mobile crowd-sourced data[J]. IEEE Transactions on Industrial Informa-tics, 2020, 16(2): 1436-1444.
[44] NING Z L, HUANG J, WANG X J, et al. Mobile edge com-puting-enabled internet of vehicles: toward energy-efficient scheduling[J]. IEEE Network, 2019, 33(5): 198-205.
[45] FENG Y, LI X L, GONG Y B, et al. A real-time driving drow-siness detection algorithm with individual differences consi-deration[J]. IEEE Access, 2019, 7: 179396-179408.
[46] ABTAHI S, HARIRI B, SHIRMOHAMMADI S. Driver drowsiness monitoring based on yawning detection[C]//Proceedings of the 2011 IEEE International Instrumenta-tion and Measurement Technology Conference, Hangzhou, May 10-12, 2011. Piscataway: IEEE, 2011: 1-4.
[47] IBRAHM M M, SOROGHAN J S, PETROPOULAKIS L. Mouth covered detection for yawn[C]//Proceedings of the 2013 IEEE International Conference on Signal and Image Processing Applications, Melaka, Oct 8-10, 2013. Piscataway: IEEE, 2013: 89-94.
[48] OMIDYEGANEH M, JAVADTALAB A, SHIRMOHAMM-ADI S. Intelligent driver drowsiness detection through fusion of yawning and eye closure[C]//Proceedings of the 2011 IEEE International Conference on Virtual Environ-ments, Human-Computer Interfaces and Measurement Sys-tems, Ottawa, Sep 19-21, 2011. Piscataway: IEEE, 2011: 18-23.
[49] OMIDYEGANEH M, SHIRMOHAMMADI S, ABTAHI S, et al. Yawning detection using embedded smart cameras[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(3): 570-582.
[50] RABMAN A, SIRSHAR M, KHAN A. Real time drowsi-ness detection using eye blink monitoring[C]//Proceedings of the 2015 National Software Engineering Conference, Rawalpindi, Dec 17-17, 2015. Piscataway: IEEE, 2015: 1-7.
[51] ZHUANG Q Y, ZHANG K H, WANG J Y, et al. Driver fatigue detection method based on eye states with pupil and iris segmentation[J]. IEEE Access, 2020, 8: 173440-173449.
[52] LU Y F, LI C L. Recognition of driver eyes?? states based on variance projections function[C]//Proceedings of the 2010 3rd International Congress on Image and Signal Proces-sing, Yantai, 2010. Piscataway: IEEE, 2010: 1919-1922.
[53] HUANG R, WANG Y, GUO L. P-FDCN based eye state analysis for fatigue detection[C]//Proceedings of the 2018 IEEE 18th International Conference on Communication Tech-nology, Chongqing, Oct 8-11, 2018. Piscataway: IEEE, 2018: 1174-1178.
[54] 李科岑, 王晓强, 林浩, 等. 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索, 2022, 16(1): 41-58.
LI K C, WANG X Q, LIN H, et al. Survey of one-stage small object detection methods in deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 41-58.
[55] 王鑫鹏, 王晓强, 林浩, 等. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57.
WANG X P, WANG X Q, LIN H, et al. Review on impro-vement of typical object detection algorithms in deep lear-ning[J]. Computer Engineering and Applications, 2022, 58(6): 42-57.
[56] FU R R, WANG H, ZHAO W B. Dynamic driver fatigue detection using hidden Markov model in real driving condi-tion[J]. Expert Systems with Applications, 2016, 63: 397-411.
[57] DU G L, LI T, LI C Q, et al. Vision-based fatigue driving recognition method integrating heart rate and facial features[J]. IEEE Transactions on Intelligent Transportation Sys-tems, 2021, 22(5): 3089-3100. |