[1] FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Cancer statistics for the year 2020: an overview[J]. International Journal of Cancer, 2021, 149(4): 778-789.
[2] ROGERS H W, WEINSTOCK M A, FELDMAN S R, et al. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012[J]. JAMA Dermatology, 2015, 151(10): 1081-1086.
[3] KHARAZMI P, ALJASSER M I, LUI H, et al. Automated detection and segmentation of vascular structures of skin lesions seen in dermoscopy, with an application to basal cell carcinoma classification[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 21(6): 1675-1684.
[4] JAIN A, WAY D, GUPTA V, et al. Development and assessment of an artificial intelligence-based tool for skin condition diagnosis by primary care physicians and nurse practitioners in teledermatology practices[J]. JAMA Network Open, 2021, 4(4): e217249.
[5] YUEKSEL M E, BORLU M. Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(4): 976-982.
[6] MA Z, TAVARES J M R S. A novel approach to segment skin lesions in dermoscopic images based on a deformable model[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 20(2): 615-623.
[7] MIRBEIK A, ASHINOFF R, JONG T, et al. Real-time high-resolution millimeter-wave imaging for in-vivo skin cancer diagnosis[J]. Scientific Reports, 2022, 12(1): 4971.
[8] LI H, CHEN D, NAILON W H, et al. Dual convolutional neural networks for breast mass segmentation and diagnosis in mammography[J]. IEEE Transactions on Medical Imaging, 2021, 41(1): 3-13.
[9] DI S, ZHAO Y Q, LIAO M, et al. TD-Net: a hybrid end-to-end network for automatic liver tumor segmentation from CT images[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 27(3): 1163-1172.
[10] 梁礼明, 陈鑫, 余洁, 等. 多尺度注意力细化视网膜分割算法[J]. 计算机工程与应用,2023, 59(6): 212-220.
LIANG L M, CHEN X, YU J, et al. Multi-scale attention refinement retinal segmentation algorithm[J]. Computer Engineering and Applications, 2023, 59(6): 212-220.
[11] DAI D, DONG C, XU S, et al. Ms RED: a novel multi-scale residual encoding and decoding network for skin lesion segmentation[J]. Medical Image Analysis, 2022, 75: 102293.
[12] HUANG X, DENG Z, LI D, et al. MISSFormer: an effective transformer for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(5): 1484-1494.
[13] QU Z, ZHUO L, CAO J, et al. TP-Net: two-path network for retinal vessel segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(4): 1979-1990.
[14] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[15] GU R, WANG G, SONG T, et al. CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(2): 699-711.
[16] HU K, LU J, LEE D, et al. AS-Net: attention synergy network for skin lesion segmentation[J]. Expert Systems with Applications, 2022, 201: 117112.
[17] WU H, CHEN S, CHEN G, et al. FAT-Net: feature adaptive transformers for automated skin lesion segmentation[J]. Medical Image Analysis, 2022, 76: 102327.
[18] BASAK H, KUNDU R, SARKAR R. MFSNet: a multi focus segmentation network for skin lesion segmentation[J]. Pattern Recognition, 2022, 128: 108673.
[19] CAO W, YUAN G, LIU Q, et al. ICL-Net: global and local inter-pixel correlations learning network for skin lesion segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(1): 145-156.
[20] FENG K, REN L, WANG G, et al. SLT-Net: a codec network for skin lesion segmentation[J]. Computers in Biology and Medicine, 2022, 148: 105942.
[21] SUN Y, DAI D, ZHANG Q, et al. MSCA-Net: multi-scale contextual attention network for skin lesion segmentation[J]. Pattern Recognition, 2023, 139: 109524.
[22] ZHOU T, ZHOU Y, HE K, et al. Cross-level feature aggregation network for polyp segmentation[J]. Pattern Recognition, 2023, 140: 109555.
[23] FENG S, ZHAO H, SHI F, et al. CPFNet: context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008-3018.
[24] CODELLA N, ROTEMBERG V, TSCHANDL P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC)[EB/OL]. [2023-03-20]. https://arxiv.org/abs/1902.03368.
[25] TSCHANDL P, ROSENDAHL C, KITTLER H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Scientific Data, 2018, 5(1): 1-9.
[26] MENDON?A T, FERREIRA P M, MARQUES J S, et al. PH 2-A dermoscopic image database for research and bench-marking[C]//Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2013: 5437-5440.
[27] ZHOU Z, SIDDIQUEE R M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, Held in Conjunction with 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Sep 20, 2018. Cham: Springer, 2018: 3-11.
[28] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL].[2023-03-20]. https://arxiv.org/abs/1804.03999.
[29] GU Z, CHENG J, FU H, et al. CE-Net: context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2281-2292. |