[1] HUANG N, ZHANG J, BURTCH G, et al. Combating procrastination on massive online open courses via optimal calls to action[J]. Information Systems Research, 2021, 32(2): 301-317.
[2] ZHU M, SARI A, LEE M M. A systematic review of research methods and topics of the empirical MOOC literature (2014—2016)[J]. The Internet and Higher Education, 2018, 37: 31-39.
[3] SEATON D T, BERGNER Y, CHUANG I, et al. Who does what in a massive open online course?[J]. Communications of the ACM, 2014, 57(4): 58-65.
[4] KIZILCEC R F, PIECH C, SCHNEIDER E. Deconstructing disengagement: analyzing learner subpopulations in massive open online courses[C]//Proceedings of the 3rd International Conference on Learning Analytics and Knowledge, Leuven, Apr 8-12, 2013. New York: ACM, 2013: 170-179.
[5] JACOBSEN D Y. Dropping out or dropping in? A connectivist approach to understanding participants?? strategies in an e-learning MOOC pilot[J]. Technology, Knowledge and Learning, 2019, 24(1): 1-21.
[6] ADAMOPOULOS P. What makes a great MOOC? An inter-disciplinary analysis of student retention in online courses[C]//Proceedings of the 34th International Conference on Information Systems, Milano, Dec 15-18, 2013: 1-21.
[7] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12): 61-70.
[8] WANG X, HE X, Wang M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 165-174.
[9] GONG J, WANG S, WANG J, et al. Attentional graph convolutional networks for knowledge concept recommendation in MOOCs in a heterogeneous view[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 79-88.
[10] PIAO G. Recommending knowledge concepts on MOOC platforms with meta-path-based representation learning[C]//Proceedings of the 14th International Conference on Educational Data Mining, Jun 29-Jul 2, 2021: 1-8.
[11] ZHANG M, ZHU J, WANG Z, et al. Providing personalized learning guidance in MOOCs by multi-source data analysis[J]. World Wide Web, 2018, 22(3): 1189-1219.
[12] ZHU Y, LU H, QIU P, et al. Heterogeneous teaching evaluation network based offline course recommendation with graph learning and tensor factorization[J]. Neurocomputing, 2020, 415: 84-95.
[13] ZHAO Z, ZHANG X, ZHOU H, et al. HetNERec: heterogeneous network embedding based recommendation[J]. Knowledge-Based Systems, 2020, 204: 106218.
[14] WELLING M, KIPF T N. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 2017 International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-14.
[15] GAO H, WANG Z, JI S. Large-scale learnable graph convolutional networks[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1416-1424.
[16] LI A, YANG B, HUO H, et al. Leveraging implicit relations for recommender systems[J]. Information Sciences, 2021, 579: 55-71.
[17] 居程程, 祝义. 采用局部子图嵌入的MOOCs知识概念推荐模型[J]. 计算机科学与探索, 2024, 18(1): 189-204.
JU C C, ZHU Y. Knowledge concept recommendation model for MOOCs with local subgraph embedding[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 189-204.
[18] YING Z, YOU J, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]//Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018: 1-11.
[19] ZHANG M, CUI Z, NEUMANN M, et al. An end-to-end deep learning architecture for graph classification[C]//Proceedings of the 2018 AAAI Conference on Artificial Intelligence, Louisiana, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4438-4445.
[20] LEE J, LEE I, KANG J. Self-attention graph pooling[C]// Proceedings of the 2019 International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 3734-3743.
[21] ZHOU X, YI Y, JIA G. Path-RotatE: knowledge graph embedding by relational rotation of path in complex space[C]//Proceedings of the 2021 IEEE/CIC International Conference on Communications in China, Xiamen, Jul 28-30, 2021. Piscataway: IEEE, 2021: 905-910.
[22] ZHANG S, TAY Y, YAO L, et al. Quaternion knowledge graph embeddings[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 1-11.
[23] WANG C, PAN S, HU R, et al. Attributed graph clustering: a deep attentional embedding approach[EB/OL]. [2023-03-12]. https://arxiv.org/abs/1906.06532.
[24] WANG C, PAN S, CELINA P Y, et al. Deep neighbor-aware embedding for node clustering in attributed graphs[J]. Pattern Recognition, 2022, 122: 108230.
[25] RAHNAMAZADEH A, MEYBODI M R, KADKHODA M T. Node classification in social network by distributed learning automata[J]. Information Systems & Telecommunication, 2017, 2(18): 111.
[26] DONG B, AGGARWAL C C, PHILIP S Y. Transfer learning for network classification[C]//Proceedings of the 2019 International Joint Conference on Neural Networks, Budapest, Jul 14-19, 2019. Piscataway: IEEE, 2019: 1-8.
[27] TANG J, AGGARWAL C, LIU H. Node classification in signed social networks[C]//Proceedings of the 2016 SIAM International Conference on Data Mining, Miami, May 5-7,2016. Philadelphia: SIAM, 2016: 54-62.
[28] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 2017 International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1263-1272.
[29] MINN S, YU Y, DESMARAIS M C, et al. Deep knowledge tracing and dynamic student classification for knowledge tracing[C]//Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, Nov 17-20, 2018. Piscataway: IEEE, 2018: 1182-1187.
[30] YEUNG C K, YEUNG D Y. Addressing two problems in deep knowledge tracing via prediction-consistent regularization[C]//Proceedings of the 5th Annual ACM Conference on Learning at Scale, New York, Jun 26-28, 2018. New York:ACM, 2018: 1-10.
[31] YEUNG C K. Deep-IRT: make deep learning based knowledge tracing explainable using item response theory[EB/OL].[2023-03-12]. https://arxiv.org/abs/1904.11738.
[32] WANG T I, TSAI K H, LEE M C, et al. Personalized learning objects recommendation based on the semantic-aware discovery and the learner preference pattern[J]. Journal of Educational Technology & Society, 2007, 10(3): 84-105.
[33] ZHANG M, CHEN Y. Inductive matrix completion based on graph neural networks[C]//Proceedings of the 2019 International Conference on Learning Representations, Apr 26-May 1, 2019: 1-14.
[34] AHMADI A H K. Memory-based graph networks[D]. Toronto: University of Toronto, 2020: 1-16.
[35] TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web, Florence, May 18-22, 2015: 1067-1077.
[36] BERG R V D, KIPF T N, WELLING M. Graph convolutional matrix completion[EB/OL]. [2023-03-12]. https://arxiv.org/abs/1706.02263.
[37] DONG Y, CHAWLA N V, SWAMI A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 135-144.
[38] SHI C, HU B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(2): 357-370.
[39] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2023-03-12]. https://arxiv.org/abs/1301.3781.
[40] YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 974-983.
[41] PAL A, EKSOMBATCHAI C, ZHOU Y, et al. PinnerSage: multi-modal user embedding framework for recommendations at pinterest[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020. New York: ACM, 2020: 2311-2320.
[42] ELBADRAWY A, KARYPIS G. Domain-aware grade prediction and top-n course recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 183-190.
[43] SYMEONIDIS P, MALAKOUDIS D. moocRec.com: massive open online courses recommender system[C]//Proceedings of the Poster Track of the 10th ACM Conference on Recommender Systems, Boston, Sep 17, 2016: 1688.
[44] WANG S, CHEN Z, LI D, et al. Attentional heterogeneous graph neural network: application to program reidentification[C]//Proceedings of the 2019 SIAM International Conference on Data Mining, Calgary, May 2-4, 2019. Philadelphia: SIAM, 2019: 693-701.
[45] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, Jul 31-Aug 4, 2005. Piscataway: IEEE, 2005: 729-734.
[46] CHEN T, SUN Y. Task-guided and path-augmented heterogeneous network embedding for author identification[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, Feb 6-10, 2017. New York: ACM, 2017: 295-304.
[47] YU J, LUO G, XIAO T, et al. MOOCCube: a large-scale data repository for NLP applications in MOOCs[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 3135-3142.
[48] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864.
[49] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Montreal, Jun 18-21, 2009. New York: ACM, 2009: 452-461.
[50] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 639-648.
[51] WANG M, ZHENG D, YE Z, et al. Deep graph library: a graph-centric, highly-performant package for graph neural networks[EB/OL]. [2023-03-12]. https://arxiv.org/abs/1909.01315. |