[1] GUO Q, ZHUANG F, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8): 3549-3568.
[2] LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the ACM Web Conference 2022, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 2320-2329.
[3] ZHOU X, SUN A, LIU Y, et al. SelfCF: a simple framework for self-supervised collaborative filtering[J]. ACM Transactions on Recommender Systems, 2023, 1(2): 1-25.
[4] YANG Y, HUANG C, XIA L, et al. Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1434-1443.
[5] SHAH A, MOLOKWU B, KOBTI Z. HTransE: hybrid translation-based embedding for knowledge graphs[C]// Proceedings of the 2022 IEEE International Conference on Knowledge Graph, Orlando, Nov 30-Dec 1, 2022. Piscataway: IEEE, 2022: 233-240.
[6] REN L J, LU J, GUO W. Multi-source knowledge embedding research of knowledge graph[C]//Proceedings of the 3rd International Conference on Circuits, Systems and Devices, Chengdu, Aug 23-25, 2019. Piscataway: IEEE, 2019: 163-166.
[7] HUANG X, ZHANG J Y, LI D C, et al. Knowledge graph embedding based question answering[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 105-113.
[8] ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 353-362.
[9] WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426.
[10] WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313.
[11] DU Y, ZHU X, CHEN L, et al. HAKG: hierarchy-aware knowledge gated network for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1390-1400.
[12] LU L, WANG B, ZHANG Z, et al. VRKG4Rec: virtual relational knowledge graph for recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining, Singapore, Feb 27-Mar 3, 2023. New York: ACM, 2023: 526-534.
[13] XIA L, HUANG C, HUANG C, et al. Automated self-supervised learning for recommendation[C]//Proceedings of the ACM Web Conference 2023, Austin, Apr 30-May 4, 2023. New York: ACM, 2023: 992-1002.
[14] WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 726-735.
[15] YAO T, YI X, CHENG D Z, et al. Self-supervised learning for large-scale item recommendations[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Nov 1-5, 2021. New York: ACM, 2021: 4321-4330.
[16] ZOU D, WEI W, MAO X L, et al. Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1358-1368.
[17] CAI X, HUANG C, XIA L, et al. LightGCL: simple yet effective graph contrastive learning for recommendation [EB/OL]. [2023-04-12]. https://arxiv.org/abs/2302.08191.
[18] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 639-648.
[19] WANG J, DING K, HONG L, et al. Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 1101-1110.
[20] JI S, FENG Y, JI R, et al. Dual channel hypergraph collaborative filtering[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020. New York: ACM, 2020: 2020-2029.
[21] XIA L, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 70-79.
[22] RUSCH T K, BRONSTEIN M M, MISHRA S. A survey on oversmoothing in graph neural networks[EB/OL]. [2023-04-12]. https://arxiv.org/abs/2303.10993.
[23] FENG Y, YOU H, ZHANG Z, et al. Hypergraph neural networks[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3558-3565.
[24] OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. [2023-04-12]. https://arxiv.org/abs/1807.03748.
[25] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 950-958.
[26] WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation[C]//Proceedings of the 2021 Web Conference, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 878-887.
[27] WANG Z, LIN G, TAN H, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. Nwe York: ACM, 2020: 219-228.
[28] ZOU D, WEI W, WANG Z, et al. Improving knowledge-aware recommendation with multi-level interactive contrastive learning[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, Oct 17-21, 2022. New York: ACM, 2022: 2817-2826.
[29] DATTA L. A survey on activation functions and their relation with Xavier and He normal initialization[EB/OL]. [2023-04-12]. https://arxiv.org/abs/2004.06632.
[30] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[EB/OL]. [2023-04-12]. https://arxiv.org/abs/1205.2618. |