[1] YANG C, HUANG Z H, WANG N Y. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13658-13667.
[2] LIANG K J, SIGMAN J B, SPELL G P, et al. Toward automatic threat recognition for airport X-ray baggage screening with deep convolutional object detection[EB/OL]. [2024-01-19]. https://arxiv.org/abs/1912.06329.
[3] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[4] BASTAN M, BYEON W, BREUEL T. Object recognition in multi-view dual energy X-ray images[C]//Proceedings of the 2013 British Machine Vision Conference, 2013.
[5] ZHENG Q H, SAPONARA S, TIAN X Y, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671.
[6] ZHENG Q H, TIAN X Y, YU Z G, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596.
[7] AKCAY S, BRECKON T P. An evaluation of region based object detection strategies within X-ray baggage security imagery[C]//Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 1337- 1341.
[8] GRIFFIN L D, CALDWELL M, ANDREWS J T A, et al. “Unexpected item in the bagging area”: anomaly detection in X-ray security images[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(6): 1539-1553.
[9] MIAO C J, XIE L X, WAN F, et al. SIXray: a large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2114-2123.
[10] BHOWMIK N, GAUS Y F A, AKCAY S, et al. On the impact of object and sub-component level segmentation strategies for supervised anomaly detection within X-ray security imagery[C]//Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2019: 986-991.
[11] HASSAN T, AKCAY S, BENNAMOUN M, et al. Cascaded structure tensor framework for robust identification of heavily occluded baggage items from X-ray scans[EB/OL]. [2024-01-19]. https://arxiv.org/abs/2004.06780.
[12] TAO R S, WEI Y L, JIANG X J, et al. Towards real-world X-ray security inspection: a high-quality benchmark and lateral inhibition module for prohibited items detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10903-10912.
[13] LIU D M, LIU J C, YUAN P X, et al. A lightweight dangerous liquid detection method based on depthwise separable convolution for X-ray security inspection[J]. Computational Intelligence and Neuroscience, 2022(1): 5371350.
[14] XU B, GAO B, LI Y H. Improved small object detection algorithm based on YOLOv5[J]. IEEE Intelligent Systems, 2024, 39(5): 57-65.
[15] MA S L, XU Y, MA S L, et al. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. [2024-01-19]. https://arxiv.org/abs/2307.07662.
[16] CHEN Y S, WANG L Z, DING B J, et al. Automated Alzheimer??s disease classification using deep learning models with Soft-NMS and improved ResNet50 integration[J]. Journal of Radiation Research and Applied Sciences, 2024, 17(1): 100782.
[17] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: improving object detection with one line of code[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5562-5570.
[18] JOCHER G. Ultralytics YOLOv8[EB/OL]. [2024-01-19]. https:// github.com/ultralytics/ultralytics.
[19] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[20] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[21] LI P W, ZHANG L J, ZHOU X D, et al. Attention based network with DA-loss for X-ray contraband automatic detection[C]//Proceedings of the 2023 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 2237-2242.
[22] WEI Y L, TAO R S, WU Z J, et al. Occluded prohibited items detection: an X-ray security inspection benchmark and de-occlusion attention module[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 138-146.
[23] LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 6153- 6162.
[24] YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 516-520.
[25] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[26] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[27] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[28] ZHANG Y, ZHUO L, MA C J, et al. CTA-FPN: channel-target attention feature pyramid network for prohibited object detection in X-ray images[J]. Sensing and Imaging, 2023, 24(1): 14.
[29] 孙嘉傲, 董乙杉, 郭靖圆, 等. 自适应与多尺度特征融合的X光违禁品检测[J]. 计算机工程与应用, 2024, 60(2): 96-102.
SUN J A, DONG Y S, GUO J Y, et al. Detection of X-ray contraband by adaptive and multi-scale feature fusion[J]. Computer Engineering and Applications, 2024, 60(2): 96-102.
[30] LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-02-20]. https://arxiv.org/abs/2209.02976.
[31] XIANG N, GONG Z H, XU Y, et al. Material-aware path aggregation network and shape decoupled SIoU for X-ray contraband detection[J]. Electronics, 2023, 12(5): 1179.
[32] DAI Y F, CHEN P C. YOLO lightweight contraband detection network using attention mechanism[C]//Proceedings of the 2023 International Conference on Mechatronics Engineering and Artificial Intelligence, 2023: 302-306.
[33] WANG Z S, WANG X H, SHI Y T, et al. Lightweight detection method for X-ray security inspection with occlusion[J]. Sensors, 2024, 24(3): 1002.
[34] HASSAN T, AK?AY S, BENNAMOUN M, et al. Tensor pooling-driven instance segmentation framework for baggage threat recognition[J]. Neural Computing and Applications, 2022, 34(2): 1239-1250.
[35] HAN L, MA C H, LIU Y, et al. SC-YOLOv8: a security check model for the inspection of prohibited items in X-ray images[J]. Electronics, 2023, 12(20): 4208.
[36] LIU W, SUN D G, WANG Y, et al. ABTD-net: autonomous baggage threat detection networks for X-ray images[C]//Proceedings of the 2023 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 1229-1234.
[37] GLENN J, ALEX S, JIRKA B, et al. ultralytics/YOLOv5: v6.1-YOLOv5.P6[EB/OL]. [2024-02-20]. https://github.com/ ultralytics/yolov5.
[38] MA C J, ZHUO L, LI J F, et al. Occluded prohibited object detection in X-ray images with global context-aware multi-scale feature aggregation[J]. Neurocomputing, 2023, 519: 1-16.
[39] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9627-9636.
[40] WANG Z S, ZHANG H Y, LIN Z B, et al. Prohibited items detection in baggage security based on improved YOLOv5[C]//Proceedings of the 2022 IEEE 2nd International Conference on Software Engineering and Artificial Intelligence. Piscataway: IEEE, 2022: 20-25.
[41] WANG H Y, WANG W, LIU Y. X-YOLO: a deep learning based toolset with multiple optimization strategies for contraband detection[C]//Proceedings of the 2020 ACM Turing Celebration Conference. New York: ACM, 2020: 127-132.
[42] 成浪, 敬超. 基于改进YOLOv7的X线图像旋转目标检测[J]. 图学学报, 2023, 44(2): 324-334.
CHENG L, JING C. X-ray image rotating object detection based on improved YOLOv7[J]. Journal of Graphics, 2023, 44(2): 324-334.
[43] YU X Y, YUAN W J, WANG A L. X-ray security inspection image dangerous goods detection algorithm based on improved YOLOv4[J]. Electronics, 2023, 12(12): 2644.
[44] ZHANG J K, LIU Y, LV X Q, et al. X-ray image prohibited item detection algorithm based on improved PP-YOLO[J]. Journal of Computers, 2023, 34(4): 53-68.
[45] MADEMLIS I, BATSIS G, CHRYSOCHOOU A A R, et al. Visual inspection for illicit items in X-ray images using deep learning[C]//Proceedings of the 2023 IEEE International Conference on Big Data. Piscataway: IEEE, 2023: 4081- 4089.
[46] NASIM A, VELAYUDHAN D, AHMED A H, et al. Incremental instance segmentation for cluttered baggage threat detection[C]//Proceedings of the 2023 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications. Piscataway: IEEE, 2023: 1-6.
[47] LU L Y. Improved YOLOv8 detection algorithm in security inspection image[EB/OL]. [2024-02-20]. https://arxiv.org/abs/ 2308.06452.
[48] 穆思奇, 林进健, 汪海泉, 等. 基于改进YOLOv4的X射线图像违禁品检测算法[J]. 兵工学报, 2021, 42(12): 2675-2683.
MU S Q, LIN J J, WANG H Q, et al. An algorithm for detection of prohibited items in X-ray images based on improved YOLOv4[J]. Acta Armamentarii, 2021, 42(12): 2675- 2683.
[49] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. [2024-02-20]. https://arxiv.org/abs/2205.12740.
[50] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2024-02-20]. https://arxiv.org/abs/2301.10051.
[51] LIU Z H, WANG H, ZHANG S T, et al. NAS-SCAM: neural architecture search-based spatial and channel joint attention module for nuclei semantic segmentation and classification[C]//Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2020: 263-272. |