[1] 罗浩, 姜伟, 范星, 等. 基于深度学习的行人重识别研究进展[J]. 自动化学报, 2019, 45(11): 2032-2049.
LUO H, JIANG W, FAN X, et al. A survey on deep learning based person re-identification[J]. Acta Automatica Sinica, 2019, 45(11): 2032-2049.
[2] 罗浩. 深度学习时代的行人重识别技术[J]. 人工智能, 2019(2): 40-49.
LUO H. Pedestrian re-identification technology in the era of deep learning[J]. AI-View, 2019(2): 40-49.
[3] 邓轩, 廖开阳, 郑元林, 等. 基于深度多视图特征距离学习的行人重识别[J]. 计算机应用, 2019, 39(8): 2223-2229. DENG X, LIAO K Y, ZHENG Y L, et al. Person re-identification based on deep multi-view feature distance learning[J]. Journal of Computer Applications, 2019, 39(8): 2223-2229.
[4] 王小檬, 梁凤梅. 融合有效掩膜和局部增强的遮挡行人重识别[J]. 计算机工程与应用, 2024, 60(11): 156-164.
WANG X M, LIANG F M. Effective mask and local enhancement for occluded person re-identification[J]. Computer Engineering and Applications, 2024, 60(11): 156-164.
[5] 曹钢钢, 王帮海, 宋雨. 结合数据增强的跨模态行人重识别轻量网络[J]. 计算机工程与应用, 2024, 60(8): 131-139.
CAO G G, WANG B H, SONG Y. Cross-modal re-identification light weight network combined with data enhancement[J]. Computer Engineering and Applications, 2024, 60(8): 131-139.
[6] 项俊, 张金城, 江小平, 等. Transformer-CNN特征跨注意力融合学习的行人重识别[J]. 计算机工程与应用, 2024, 60(16): 94-104.
XIANG J, ZHANG J C, JIANG X P, et al. Cross-attention fusion learning of transformer-CNN features for person re-identification[J]. Computer Engineering and Applications, 2024, 60(16): 94-104.
[7] 彭锦佳, 王辉兵. 基于异构卷积神经网络集成的无监督行人重识别方法[J]. 电子学报, 2023, 51(10): 2902-2914. PENG J J, WANG H B. An unsupervised person re-identification method based on heterogeneous convolutional neural networks ensemble[J]. Acta Electronica Sinica, 2023, 51(10): 2902-2914.
[8] 袁瑞超, 胡晓光, 杨世欣. 基于全局和局部特征的跨模态行人再识别方法[J]. 智能计算机与应用, 2022, 12(9): 17-26. YUAN R C, HU X G, YANG S X. Cross-modal pedestrians re-identification method based on global and local features[J]. Intelligent Computer and Applications, 2022, 12(9): 17-26.
[9] 杨世欣, 胡晓光, 杜卓群, 等. 基于跨纬度交互注意力机制的行人重识别方法[J]. 智能计算机与应用, 2022, 12(3): 28-32.
YANG S X, HU X G, DU Z Q, et al. Research on person re-identification based on triplet attention mechanism[J]. Intelligent Computer and Applications, 2022, 12(3): 28-32.
[10] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2024-06-25]. https://arxiv.org/abs/2010.11929.
[11] HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87-110.
[12] HE S T, LUO H, WANG P C, et al. TransReID: transformer-based object re-identification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14993-15002.
[13] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[14] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[15] TAN L, DAI P Y, JI R R, et al. Dynamic prototype mask for occluded person re-identification[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 531-540.
[16] WANG S J, LIU R, LI H F, et al. Occluded person re-identification via defending against attacks from obstacles[J]. IEEE Transactions on Information Forensics and Security, 2022, 18: 147-161.
[17] PAN Z, CAI J, ZHUANG B. Fast vision transformers with HiLo attention[C]//Advances in Neural Information Processing Systems 35, 2022: 14541-14554.
[18] HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. [2024-06-25]. https:// arxiv.org/abs/1703.07737.
[19] DENG J K, GUO J, XUE N N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4685-4694.
[20] MIAO J X, WU Y, LIU P, et al. Pose-guided feature alignment for occluded person re-identification[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 542-551.
[21] GAO S, WANG J Y, LU H C, et al. Pose-guided visible part matching for occluded person ReID[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11741-11749.
[22] WANG G A, YANG S, LIU H Y, et al. High-order information matters: learning relation and topology for occluded person re-identification[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6448-6457.
[23] HE L X, LIU W. Guided saliency feature learning for person re-identification in crowded scenes[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 357-373.
[24] CHEN P X, LIU W F, DAI P Y, et al. Occlude them all: occlusion-aware attention network for occluded person Re-ID[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11813-11822.
[25] MA Z X, ZHAO Y F, LI J. Pose-guided inter- and intra-part relational transformer for occluded person re-identification[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 1487-1496.
[26] ZHENG K C, LAN C L, ZENG W J, et al. Pose-guided feature learning with knowledge distillation for occluded person re-identification[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 4537-4545.
[27] ZHAI Y, HAN X F, MA W Z, et al. PGMANet: pose-guided mixed attention network for occluded person re-identification[C]//Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway: IEEE, 2021: 1-8.
[28] HOU R B, MA B P, CHANG H, et al. Feature completion for occluded person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4894-4912.
[29] JIN H Y, LAI S Q, QIAN X M. Occlusion-sensitive person re-identification via attribute-based shift attention[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 2170-2185.
[30] ZHAO C R, LV X B, DOU S G, et al. Incremental generative occlusion adversarial suppression network for person ReID[J]. IEEE Transactions on Image Processing, 2021, 30: 4212-4224.
[31] TAN H C, LIU X P, BIAN Y H, et al. Incomplete descriptor mining with elastic loss for person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 160-171.
[32] MIAO J X, WU Y, YANG Y. Identifying visible parts via pose estimation for occluded person re-identification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4624-4634.
[33] WANG P F, DING C X, SHAO Z Y, et al. Quality-aware part models for occluded person re-identification[J]. IEEE Transactions on Multimedia, 2022, 25: 3154-3165.
[34] ZHANG X K, YAN Y, XUE J H, et al. Semantic-aware occlusion-robust network for occluded person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(7): 2764-2778.
[35] HUANG M Y, HOU C P, YANG Q Y, et al. Reasoning and tuning: graph attention network for occluded person re-identification[J]. IEEE Transactions on Image Processing, 2023, 32: 1568-1582.
[36] LIU Z G, WANG Q, WANG M, et al. Occluded person re-identification with pose estimation correction and feature reconstruction[J]. IEEE Access, 2023, 11: 14906-14914.
[37] WANG S J, LIU R, LI H F, et al. Occluded person re-identification via defending against attacks from obstacles[J]. IEEE Transactions on Information Forensics and Security, 2022, 18: 147-161.
[38] LI Y L, HE J F, ZHANG T Z, et al. Diverse part discovery: occluded person re-identification with part-aware transformer[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2897-2906.
[39] JIA M X, CHENG X H, LU S J, et al. Learning disentangled representation implicitly via transformer for occluded person re-identification[J]. IEEE Transactions on Multimedia, 2022, 25: 1294-1305.
[40] SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 501-518.
[41] HE L X, SUN Z N, ZHU Y H, et al. Recognizing partial biometric patterns[EB/OL]. [2024-06-23]. https://arxiv.org/abs/1810.07399.
[42] SUH Y, WANG J D, TANG S Y, et al. Part-aligned bilinear representations for person re-identification[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 418-437.
[43] LI Y L, HE J F, ZHANG T Z, et al. Diverse part discovery: occluded person re-identification with part-aware transformer[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2897-2906.
[44] SUN H, CHEN Z Y, YAN S Y, et al. MVP matching: a maximum-value perfect matching for mining hard samples, with application to person re-identification[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6736-6746.
[45] LUO C C, CHEN Y T, WANG N Y, et al. Spectral feature transformation for person re-identification[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4975-4984.
[46] JIA M X, CHENG X H, ZHAI Y P, et al. Matching on sets: conquer occluded person re-identification without alignment[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1673-1681.
[47] ZHU K, GUO H Y, LIU Z W, et al. Identity-guided human semantic parsing for person re-identification[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 346-363.
[48] KALAYEH M M, BASARAN E, G?KMEN M, et al. Human semantic parsing for person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1062-1071.
[49] LIU J X, NI B B, YAN Y C, et al. Pose transferrable person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4099-4108.
[50] MAO J, YAO Y, SUN Z, et al. Attention map guided transformer pruning for edge device[EB/OL]. [2024-06-23]. https://arxiv.org/abs/2304.01452. |