[1] 余梅, 文艺, 毛敏. 我国苹果对外贸易格局及发展趋势[J]. 中国果树, 2022 (7): 100-104.
YU M, WEN Y, MAO M. The pattern and development trend of China’s apple foreign trade[J]. China Fruits, 2022 (7): 100-104.
[2] 黄凯奇, 赵鑫, 李乔哲, 等. 视觉图灵: 从人机对抗看计算机视觉下一步发展[J]. 图学学报, 2021, 42(3): 339-348.
HUANG K Q, ZHAO X, LI Q Z, et al. Visual Turing: the next development of computer vision in the view of human-computer gaming[J]. Journal of Graphics, 2021, 42(3): 339-348.
[3] 王铁胜. 计算机视觉技术的发展及应用[J]. 信息系统工程, 2022 (4): 63-66.
WANG T S. Development and application of computer vision technology[J]. China CIO News, 2022(4): 63-66.
[4] 苏俊楷, 段先华, 叶赵兵. 改进YOLOv5算法的玉米病害检测研究[J]. 计算机科学与探索, 2023, 17(4): 933-941.
SU J K, DUAN X H, YE Z B. Research on corn disease detection based on improved YOLOv5 algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17 (4): 933-941.
[5] MOSTAFA A M, KUMAR S A, MERAJ T, et al. Guava disease detection using deep convolutional neural networks: a case study of guava plants[J]. Applied Sciences, 2021, 12(1): 239.
[6] 郭文娟, 冯全, 李相周. 基于农作物病害检测与识别的卷积神经网络模型研究进展[J]. 中国农机化学报, 2022, 43(10): 157-166.
GUO W J, FENG Q, LI X Z. Research progress of convolutional neural network model based on crop disease detection and recognition[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 157-166.
[7] NACHTIGALL L G, ARAUJO R M, NACHTIGALL G R. Classification of apple tree disorders using convolutional neural networks[C]//Proceedings of the 2016 IEEE 28th International Conference on Tools with Artificial Intelligence, San Jose, 2016. Piscataway: IEEE, 2016: 472-476.
[8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-Net classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[9] 王权顺, 吕蕾, 黄德丰, 等. 基于改进YOLOv4算法的苹果叶部病害缺陷检测研究[J]. 中国农机化学报, 2022, 43(11): 182-187.
WANG Q S, LV L, HUANG D F, et al. Research of apple leaf disease defect detection based on improved YOLOv4 algorithm[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 182-187.
[10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-05-26]. https://arxiv.org/abs/2004.10934.
[11] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269.
[12] JIANG P, CHEN Y, LIU B, et al. Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks[J]. IEEE Access, 2019, 7: 59069-59080.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conf-erence on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[14] 李鑫然, 李书琴, 刘斌. 基于改进Faster R_CNN的苹果叶片病害检测模型[J]. 计算机工程, 2021, 47(11): 298-304.
LI X R, LI S Q, LIU B. Apple leaf diseases detection model based on improved Faster R_CNN[J]. Computer Engineering, 2021, 47(11): 298-304.
[15] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, 2015: 91-99.
[16] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2023-05-26]. https://arxiv.org/abs/2107.08430.
[17] ZHANG H, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[EB/OL]. [2023-05-26]. https://arxiv.org/abs/2008.13367.
[18] 胡皓, 郭放, 刘钊. 改进YOLOX-S模型的施工场景目标检测[J]. 计算机科学与探索, 2023, 17(5): 1089-1101.
HU H, GUO F, LIU Z. Object detection based on improved YOLOX-S model in construction sites[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5):1089-1101.
[19] WANG Y, WU H, HUA X, et al. Biological characters identification for hard clam larva based on the improved YOLOX-S[J]. Computers and Electronics in Agriculture, 2023, 212: 108103.
[20] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-05-26]. https://arxiv.org/abs/2207.02696.
[21] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11534-11542.
[22] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[EB/OL]. [2023-05-26]. https://arxiv.org/abs/2209.07947. |