计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (6): 1421-1437.DOI: 10.3778/j.issn.1673-9418.2312062
江健,张琪,王财勇
出版日期:
2024-06-01
发布日期:
2024-05-31
JIANG Jian, ZHANG Qi, WANG Caiyong
Online:
2024-06-01
Published:
2024-05-31
摘要: 虹膜识别技术以其卓越的精确性、安全性和稳定性等特点著称。当前的虹膜识别系统在约束用户状态和采集设备的条件下展现出较为稳定的性能,但是无法适应目前复杂多样的开放场景。开放场景中包含大量不确定采集因素,例如采集的虹膜图像容易受到睫毛、头发遮挡和镜面反射等因素的干扰,这些不确定性因素往往会造成图像质量的整体下降,导致虹膜图像分割和特征提取环节性能的显著下降。近年来,深度学习算法已被广泛应用于虹膜识别,旨在提升系统对开放场景的适应性。对深度学习技术在虹膜识别领域的应用现状进行了综述,总结了其在提高开放场景下识别精度的关键作用。首先,介绍了虹膜识别的背景;其次,全面分析了针对虹膜生物识别开发的各类深度学习模型在虹膜分割、特征提取和特征匹配任务中的表现,阐述了它们的优势和局限;然后,系统地总结了常见的虹膜数据集及其特性;最后,指出了虹膜识别任务新挑战以及未来探索的潜在方向。
江健, 张琪, 王财勇. 基于深度学习的虹膜识别研究综述[J]. 计算机科学与探索, 2024, 18(6): 1421-1437.
JIANG Jian, ZHANG Qi, WANG Caiyong. Review of Deep Learning Based Iris Recognition[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1421-1437.
[1] BOWYER K W, BURGE M J. Handbook of iris recognition[M]. Berlin, Heidelberg: Springer, 2016: 1-20. [2] DAUGMAN J. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1148-1161. [3] WILDES R P, ASMUTH J C, GREEN G L, et al. A machine-vision system for iris recognition[J]. Machine Vision & Applications, 1996, 9(1): 1-8. [4] BOLES W W, BOASHASH B. A human identification technique using images of the iris and wavelet transform[J]. IEEE Transactions on Signal Processing, 1998, 46(4): 1185-1188. [5] KUMAR B, XIE C Y, THORNTON J. Iris verification using correlation filters[C]//Proceedings of the 4th International Conference on Audio-and Video-Based Biometrie Person Authentication. Berlin, Heidelberg: Springer, 2003: 697-705. [6] SUN Z N, TAN T N. Ordinal measures for iris recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(12): 2211-2226. [7] NGUYEN K, PROENCCA X, FERNANDEZ A. Deep lear-ning for iris recognition: a survey[J]. arXiv:2210.05866, 2022. [8] RONNEBERGER O, PHILIPP F, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: Springer, 2015: 234-241. [9] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 2980-2988. [10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proce-ssing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [11] PROENCA H, FILIPE S, SANTOS R, et al. The UBIRIS. v2: a database of visible wavelength iris images captured on-the-move and at-a-distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32: 1529-1535. [12] CASIA. CASIA iris database V4[EB/OL]. [2023-09-27]. http:// biometrics.idealtest.org/dbDetailForUser.do?id=14. [13] DONG W, SUN Z, TAN T. A design of iris recognition system at a distance[C]//Proceedings of the 2009 Chinese Conference on Pattern Recognition, Nanjing, Nov 4-6, 2009: 1-5. [14] KUMAR A, PASSI A. Comparison and combination of iris matchers for reliable personal authentication[J]. Pattern Recognition, 2010, 43(3): 1016-1026. [15] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [16] LOZEJ J, MEDEN B, STRUC V, et al. End-to-end iris segmentation using U-Net[C]//Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence, San Carlos, Jul 18-20, 2018. Piscataway: IEEE, 2018: 1-6. [17] LIAN S, LUO Z, ZHONG Z, et al. Attention guided U-Net for accurate iris segmentation[J]. Journal of Visual Communication and Image Representation, 2018, 56: 296-304. [18] WU X Q, ZHAO L. Study on iris segmentation algorithm based on dense U-Net[J]. IEEE Access, 2019, 7: 123959-123968. [19] ZHANG W, LU X Q, GU Y, et al. A robust iris segmentation scheme based on improved U-Net[J]. IEEE Access, 2019, 7: 85082-85089. [20] WANG C Y, MUHAMMAD J, WANG Y L, et al. Towards complete and accurate iris segmentation using deep multi-task attention network for non-cooperative iris recognition[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2944-2959. [21] JHA R R, JASWAL G, GUPTA D, et al. PixISegNet: pixel-level iris segmentation network using convolutional encoder-decoder with stacked hourglass bottleneck[J]. IET Biometrics, 2020, 9: 11-24. [22] LI Y H, ASLAM M, PUTRI W R, et al. Robust iris segmentation algorithm in non-cooperative environments using interleaved residual U-Net[J]. Sensors, 2021, 21(4): 1434. [23] MIRON C, PASARICA A, MANTA V, et al. Efficient and robust eye images iris segmentation using a lightweight U-net convolutional network[J]. Multimedia Tools and Applications, 2022, 81: 14961-14977. [24] SARDAR M, BANERJEE S, MITRA S. Iris segmentation using interactive deep learning[J]. IEEE Access, 2020, 8: 219322-219330. [25] 霍光, 林大为, 刘元宁, 等. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600. HUO G, LIN D W, LIU Y N, et al. Lightweight iris segmentation model based on multiscale feature and attention mecha-nism[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(9): 2591-2600. [26] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. [27] ZHOU Z W, SIDDIQUEE M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and the 8th International Workshop on Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11. [28] HUO G, LIN D, YUAN M. Iris segmentation method based on improved UNet++[J]. Multimedia Tools and Applications, 2022, 81(28): 41249-41269. [29] TAN M X, LE Q. EfficientNetV2: smaller models and faster training[C]//Proceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 10096-10106. [30] AHMAD S, FULLER B. Unconstrained iris segmentation using convolutional neural networks[C]//Proceedings of the 14th Asian Conference on Computer Vision. Cham: Springer, 2018: 450-466. [31] 史雪玉. 基于深度卷积网络的虹膜分割与识别方法研究[D]. 大连: 大连理工大学, 2022. SHI X Y. Research on Iris segmentation and recognition method based on deep convolutional network[D]. Dalian: Dalian University of Technology, 2022. [32] 敬红燕, 彭静, 吴锡, 等. 基于Mask R-CNN卷积神经网络的虹膜分割[J]. 计算机系统应用, 2023, 32(2): 83-93. JING H Y, PENG J, WU X, et al. Mask R-CNN-embedded convolutional neural network for iris segmentation[J]. Computer Systems & Applications, 2023, 32(2): 83-93. [33] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. [34] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [35] SUN Y, LU Y, LIU Y, et al. Towards more accurate and complete iris segmentation using hybrid transformer U-Net[C]//Proceedings of the 2022 IEEE International Joint Conference on Biometrics. Piscataway: IEEE, 2022: 1-10. [36] 顾正杰, 王财勇, 田启川, 等. 结合Transformer与对称型编解码器的噪声虹膜图像分割方法[J]. 计算机辅助设计与图形学学报, 2022, 34(12): 1887-1898. GU Z J, WANG C Y, TIAN Q C, et al. A symmetrical encoder-decoder network with transformer for noise-robust iris segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(12): 1887-1898. [37] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [38] MENG Y, BAO T. Towards more accurate and complete heterogeneous iris segmentation using a hybrid deep learning approach[J]. Journal of Imaging, 2022, 8: 246. [39] KRIZHEVSKY A, SUTSKEVER L, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [40] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014. [41] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 1-9. [42] HE K M, ZHANG X, SUN J, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 770-778. [43] HUANG G, LIU Z, MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 2261-2269. [44] ZHANG Q, LI H, SUN Z, et al. Deep feature fusion for iris and periocular biometrics on mobile devices[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11): 2897-2912. [45] BOWYER K, PATRICK J F. The ND-IRIS-0405 iris image dataset[J]. arXiv:1606.04853, 2016. [46] GANGWAR A, JOSHI A. DeepIrisNet: deep iris representation with applications in iris recognition and cross-sensor iris recognition[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 2301-2305. [47] PROENCA H. DeepGabor: a learning-based framework to augment iriscodes permanence[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 3748-3757. [48] NGUYEN K, FOOKES C, SRIDHA S, et al. Complex-valued iris recognition network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 182-196. [49] ZHAO Z J, KUMAR A. A deep learning based unified framework to detect, segment and recognize irises using spatially corresponding features[J]. Pattern Recognition, 2019, 93: 546-557. [50] WANG K, KUMAR A. Toward more accurate iris recognition using dilated residual features[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(12): 3233-3245. [51] ZHAO T, LIU Y, HUO G, et al. A deep learning iris recognition method based on capsule network architecture[J]. IEEE Access, 2019, 7: 49691-49701. [52] 袁一航. 基于ResNet的虹膜识别算法研究及系统实现[D]. 长春: 吉林大学, 2023. YUAN Y H. Research and system implementation of iris recognition algorithm based on ResNet[D]. Changchun: Jilin University, 2023. [53] REN M, WANG Y L, SUN Z N, et al. Dynamic graph representation for occlusion handling in biometrics[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 11940-11947. [54] WEI J Z, WANG Y L, WU X, et al. Contrastive uncertainty learning for iris-recognition with insufficient labeled samples[C]//Proceedings of the 2021 IEEE International Joint Conference on Biometrics. Piscataway: IEEE, 2021: 1-8. [55] WEI J, WANG Y, HUANG H, et al. Contextual measures for iris recognition[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 57-70. [56] GANGWAR A, JOSHI A, RAGHAVENDRA R, et al. DeepIrisNet2: learning deep-iriscodes from scratch for segmentation-robust visible wavelength and near infrared iris recognition[J]. arXiv:1902.05390, 2019. [57] HSIAO C S, FAN C P. EfficientNet based iris biometric recognition methods with pupil positioning by U-Net[C]//Proceedings of the 2021 3rd International Conference on Computer Communication and the Internet. Piscataway: IEEE, 2021: 1-5. [58] NGUYEN K, FOOKES C, SRIDHARAN S. Constrained design of deep iris networks[J]. IEEE Transactions on Image Processing, 2020, 29: 7166-7175. [59] 田玉通. 基于轻量化神经网络的虹膜识别方法研究[D]. 北京: 北方工业大学, 2022. TIAN Y T. Research on iris recognition method based on lightweight neural network[D]. Beijing: North China University of Technology, 2022. [60] WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 499-515. [61] WANG H, WANG Y T, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5265-5274. [62] DENG J K, GUO J, XUE N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4685-4694. [63] HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2006: 1735-1742. [64] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 815-823. [65] LIU W Y, WEN Y D, YU Z D, et al. Large-margin softmax loss for convolutional neural networks[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, Jun 19-24, 2016: 507-516. [66] LIU N F, ZHANG M, LI H, et al. DeepIris[J]. Pattern Recognition Letters, 2015, 82: 154-161. [67] WANG M, DENG W H. Deep face recognition: a survey[J]. Neurocomputing, 2018, 429: 215-244. [68] OMELINA L, GOGA J, JANSEN B, et al. A survey of iris datasets[J]. Image and Vision Computing, 2021, 108: 104109. [69] SHAH S, ROSS A. Generating synthetic irises by feature agglomeration[C]//Proceedings of the 2006 International Conference on Image Processing. Piscataway: IEEE, 2006: 317-320. [70] ZUO J, SCHMID N A, CHEN X. On generation and analysis of synthetic iris images[J]. IEEE Transactions on Information Forensics and Security, 2007, 2(1): 77-90. [71] SHARMA A, VERMA S, VATSA M, et al. On cross spectral periocular recognition[C]//Proceedings of the 2014 IEEE International Confenrce on Image Processing. Piscataway: IEEE, 2014: 5007-5011. [72] NALLA P R, KUMAR A. Toward more accurate iris recognition using cross-spectral matching[J]. IEEE Transactions on Image Processing, 2017, 26(1): 208-221. [73] HOSSEINI M S, ARAABI B N, SOLTANIAN-ZADEH H. Pattern for iris recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59: 792-804. [74] SEQUEIRA A, CHEN L, WILD P, et al. Cross-eyed-cross-spectral iris/periocular recognition database and competition[C]//Proceedings of the 2016 International Conference of the Biometrics Special Interest Group. Piscataway: IEEE, 2016: 249-256. [75] ICB. Dataset provided within the ICB competition on cross-sensor iris recognition[EB/OL]. [2023-09-27]. http://biometrics.idealtest.org/2015/csir2015.jsp. [76] SANTOS G, GRANCHO E, BERNARDO M V, et al. Fusing iris and periocular information for cross-sensor recognition[J]. Pattern Recognition Letters, 2015, 57: 52-59. [77] ZHANG M, ZHANG Q, SUN Z, et al. The BTAS competition on mobile iris recognition[C]//Proceedings of the 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems. Piscataway: IEEE, 2016: 1-7. [78] RATTANI A, DERAKHSHANI R, SARIPALLE S. ICIP 2016 competition on mobile ocular biometric recognition[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 320-324. [79] MARSICO M, NAPPI M, RICCIO D, et al. Mobile iris challenge evaluation (MICHE)-I, biometric iris dataset and protocols[J]. Pattern Recognition Letters, 2015, 57: 17-23. [80] KARAKAYA M. Deep learning frameworks for off-angle iris recognition[C]//Proceedings of the 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems. Piscataway: IEEE, 2018: 1-8. [81] JALILIAN E, KARAKAYA M. CNN-based off-angle iris segmentation and recognition[J]. IET Biometrics, 2021, 10(5): 518-535. [82] WEI J, WANG X, WU X, et al. Cross-sensor iris recognition using adversarial strategy and sensor-specific information[C]//Proceedings of the 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems. Piscataway: IEEE, 2019: 1-8. [83] MOSTOFA M, MOHAMADI S, DAWSON J, et al. Deep GAN-based cross-spectral cross-resolution iris recognition[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3(4): 443-463. [84] 任家润, 沈文忠. 双重注意力机制下的跨光谱虹膜识别优化算法[J]. 计算机工程与应用, 2023, 59(1): 187-198. REN J R, SHEN W Z. Optimization algorithm of cross spectral iris recognition based on dual attention mechanism[J]. Computer Engineering and Applications, 2023, 59(1): 187-198. [85] WANG K, KUMAR A. Periocular-assisted multi-feature collaboration for dynamic iris recognition[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 866-879. [86] LUO Z D, LI J, ZHU Y S. A deep feature fusion network based on multiple attention mechanisms for joint iris-periocular biometric recognition[J]. IEEE Signal Processing Letters, 2021, 28: 1060-1064. [87] LUO Z, GU Q, QI G, et al. A robust single-sensor face and iris biometric identification system based on multimodal feature extraction network[C]//Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2019: 1237-1244. [88] NADA A, HEYAM H. Deep learning approach for multimodal biometric recognition system based on fusion of iris, face, and finger vein traits[J]. Sensors, 2020, 20(19): 5523. |
[1] | 韩涵, 黄训华, 常慧慧, 樊好义, 陈鹏, 陈姞伽. 心电领域中的自监督学习方法综述[J]. 计算机科学与探索, 2024, 18(7): 1683-1704. |
[2] | 利建铖, 曹路, 何锡权, 廖军红. CT影像下的肺结节分类方法研究综述[J]. 计算机科学与探索, 2024, 18(7): 1705-1724. |
[3] | 侯鑫, 王艳, 王绚, 范伟. 全景影像在城市研究中的应用进展综述[J]. 计算机科学与探索, 2024, 18(7): 1661-1682. |
[4] | 蒲秋梅, 殷帅, 李正茂, 赵丽娜. U型卷积网络在乳腺医学图像分割中的研究综述[J]. 计算机科学与探索, 2024, 18(6): 1383-1403. |
[5] | 于范, 张菁. 滑窗注意力多尺度均衡的密集行人检测算法[J]. 计算机科学与探索, 2024, 18(5): 1286-1300. |
[6] | 曾凡智, 冯文婕, 周燕. 深度学习的自然场景文本识别方法综述[J]. 计算机科学与探索, 2024, 18(5): 1160-1181. |
[7] | 张凯丽, 王安志, 熊娅维, 刘运. 基于Transformer的单幅图像去雾算法综述[J]. 计算机科学与探索, 2024, 18(5): 1182-1196. |
[8] | 蓝鑫, 吴淞, 伏博毅, 秦小林. 深度学习的遥感图像旋转目标检测综述[J]. 计算机科学与探索, 2024, 18(4): 861-877. |
[9] | 孙水发, 汤永恒, 王奔, 董方敏, 李小龙, 蔡嘉诚, 吴义熔. 动态场景的三维重建研究综述[J]. 计算机科学与探索, 2024, 18(4): 831-860. |
[10] | 王恩龙, 李嘉伟, 雷佳, 周士华. 基于深度学习的红外可见光图像融合综述[J]. 计算机科学与探索, 2024, 18(4): 899-915. |
[11] | 曹传博, 郭春, 李显超, 申国伟. 基于AECD词嵌入的挖矿恶意软件早期检测方法[J]. 计算机科学与探索, 2024, 18(4): 1083-1093. |
[12] | 周燕, 李文俊, 党兆龙, 曾凡智, 叶德旺. 深度学习的三维模型识别研究综述[J]. 计算机科学与探索, 2024, 18(4): 916-929. |
[13] | 杨超城, 严宣辉, 陈容均, 李汉章. 融合双重注意力机制的时间序列异常检测模型[J]. 计算机科学与探索, 2024, 18(3): 740-754. |
[14] | 申通, 王硕, 李孟, 秦伦明. 深度学习在动物行为分析中的应用研究进展[J]. 计算机科学与探索, 2024, 18(3): 612-626. |
[15] | 薛金强, 吴秦. 面向图像复原和增强的轻量级交叉门控Transformer[J]. 计算机科学与探索, 2024, 18(3): 718-730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||