Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (8): 1842-1849.DOI: 10.3778/j.issn.1673-9418.2011042
• Artificial Intelligence • Previous Articles Next Articles
HUANG Hao1,2, GE Hongwei1
Received:
2020-11-12
Revised:
2021-01-29
Online:
2022-08-01
Published:
2021-03-28
About author:
HUANG Hao, born in 1996, M.S. candidate, student member of CCF. His research interests include pattern recognition and machine learning.Supported by:
黄浩1,2, 葛洪伟1
作者简介:
黄浩(1996—),男,湖北黄冈人,硕士研究生,CCF学生会员,主要研究方向为模式识别、机器学习。基金资助:
CLC Number:
HUANG Hao, GE Hongwei. Deep Residual Expression Recognition Network to Enhance Inter-class Discrimination[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1842-1849.
黄浩, 葛洪伟. 强化类间区分的深度残差表情识别网络[J]. 计算机科学与探索, 2022, 16(8): 1842-1849.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2011042
AffectNet | RAF-DB | Ferplus | |||
---|---|---|---|---|---|
Approach | Acc/% | Approach | Acc/% | Approach | Acc/% |
DLP-CNN[ | 54.47 | DLP-CNN[ | 74.20 | Baseline[ | 83.10 |
pACNN[ | 55.33 | EAU-Net[ | 81.83 | TFE-JL[ | 84.30 |
EAU-Net[ | 58.91 | DeepExp3D[ | 82.06 | VGG13-PLD[ | 84.99 |
Baseline[ | 54.52 | Baseline[ | 82.88 | SHCNN[ | 86.54 |
IPA2LT[ | 56.51 | pACNN[ | 83.05 | ESR-9[ | 87.15 |
RMRnet | 58.43 | RMRnet | 86.14 | RMRnet | 87.26 |
Table 1 Comparative experiment on AffectNet, RAF-DB, Ferplus
AffectNet | RAF-DB | Ferplus | |||
---|---|---|---|---|---|
Approach | Acc/% | Approach | Acc/% | Approach | Acc/% |
DLP-CNN[ | 54.47 | DLP-CNN[ | 74.20 | Baseline[ | 83.10 |
pACNN[ | 55.33 | EAU-Net[ | 81.83 | TFE-JL[ | 84.30 |
EAU-Net[ | 58.91 | DeepExp3D[ | 82.06 | VGG13-PLD[ | 84.99 |
Baseline[ | 54.52 | Baseline[ | 82.88 | SHCNN[ | 86.54 |
IPA2LT[ | 56.51 | pACNN[ | 83.05 | ESR-9[ | 87.15 |
RMRnet | 58.43 | RMRnet | 86.14 | RMRnet | 87.26 |
[1] | DENG J, PANG G, ZhANG Z, et al. cGAN based facial expression recognition for human-robot interaction[J]. IEEE Access, 2019, 7: 9848-9859. |
[2] | DING H, SRICHARAN K, CHELLAPPA R. ExprGAN: facial expression editing with controllable expression inten- sity[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 6781-6788. |
[3] | YANG H, CIFTCI U, YIN L. Facial expression recognition by de-expression residue learning[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2168-2177. |
[4] | ZHOU X, JIN K, SHAN Y, et al. Visually interpretable representation learning for depression recognition from facial images[J]. IEEE Transactions on Affective Computing, 2020, 11(3): 542-552. |
[5] | GOH K M, NG C H, LIM L L, et al. Micro-expression rec-ognition: an updated review of current trends, challenges and solutions[J]. The Visual Computer, 2020, 36(3): 445-468. |
[6] | WANG C, PENG M, BI T, et al. Micro-attention for micro-expression recognition[J]. Neurocomputing, 2020, 410: 354-362. |
[7] | TAKALKAR M A, XU M, CHACZKO Z. Manifold feature integration for micro-expression recognition[J]. Multimedia Systems, 2020, 26(5): 535-551. |
[8] | ZENG N, ZHANG H, SONG B, et al. Facial expression recognition via learning deep sparse autoencoders[J]. Neuro-computing, 2018, 273: 643-649. |
[9] | LI S, DENG W H, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]// Proceedings of the 2017 IEEE Conference on Comp-uter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017.Washington: IEEE Computer Society, 2017: 2584-2593. |
[10] | LI Y, ZENG J, SHAN S G, et al. Occlusion aware facial expression recognition using CNN with attention mechanism[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2439-2450. |
[11] | JIA X, ZHENG X, LI W, et al. Facial emotion distribution learning by exploiting low-rank label correlations locally[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Was-hington: IEEE Computer Society, 2019: 9841-9850. |
[12] | LEE J, KIM S, KIM S, et al. Context-aware emotion reco-gnition networks[C]// Proceedings of the 2019 IEEE Intern-ational Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Washington:IEEE Computer Society, 2019: 10143-10152. |
[13] | BADDAR W J, RO Y M. Mode variational LSTM robust to unseen modes of variation: application to facial expression recognition[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Sympo-sium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park:AAAI, 2019: 3215-3223. |
[14] | XIE S, HU H, WU Y. Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition[J]. Pattern Recognition, 2019, 92: 177-191. |
[15] | BAI M, XIE W, SHEN L. Disentangled feature based adversarial learning for facial expression recognition[C]// Proceedings of the 2019 IEEE International Conference on Image Processing, Taiwan, China, Sep 22, 2019. Piscataway:IEEE, 2019: 31-35. |
[16] | BARSOUM E, ZHANG C, FERRER C C, et al. Training deep networks for facial expression recognition with crowd-sourced label distribution[C]// Proceedings of the 18th ACM International Conference on Multimodal Interaction,Tokyo, Nov 12-16, 2016. New York: ACM, 2016: 279-283. |
[17] | BARROS P V A, PARISI G I, WERMTER S. A personalized affective memory model for improving emotion recognition[C]// Proceedings of the 36th International Confe-rence on Machine Learning, Long Beach, Jun 9-15, 2019: 485-494. |
[18] | SHAN L, DENG W H. Deep facial expression recognition: a survey[J]. IEEE Transactions on Affective Computing, 2020. DOI: 10.1109/TAFFC.2020.2981446. |
[19] | LI S, DENG W H. Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recog-nition[J]. IEEE Transactions on Image Processing, 2018, 28(1): 356-370. |
[20] | ZHANG L, VERMA B, TJONDRONEGORO D, et al. Facial expression analysis under partial occlusion: a survey[J]. ACM Computing Surveys, 2018, 51(2): 1-49. |
[21] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recog-nition, Las Vegas, Jun 26-Jul 1, 2016. Washington:IEEE Computer Society, 2016: 770-778. |
[22] | MOLLAHOSSEINI A, HASANI B, MAHOOR M H. AffectNet: a database for facial expression, valence, and arousal computing in the wild[J]. IEEE Transactions on Affective Computing, 2017, 10(1): 18-31. |
[23] | ZENG J B, SHAN S G, CHEN X L. Facial expression recognition with inconsistently annotated datasets[C]// LNCS 11217: Proceedings of the 15th European Conference on Com-puter Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 227-243. |
[24] | KOUJAN M R, ALHARBAWEE L, GIANNAKAKIS G, et al. Real-time facial expression recognition“in the wild”by disentangling 3D expression from identity[J].arXiv:2005.05509, 2020. |
[25] | LI M, XU H, HUANG X C, et al. Facial expression recog-nition with identity and emotion joint learning[J]. IEEE Trans-actions on Affective Computing, 2021, 12(2): 544-550. |
[26] | MIAO S, XU H, HAN Z, et al. Recognizing facial expressions using a shallow convolutional neural network[J]. IEEE Access, 2019, 7: 78000-78011. |
[27] | SIQUEIRA H, MAGG S, WERMTER S. Efficient facial feature learning with wide ensemble-based convolutional neural networks[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 5800-5809. |
[1] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[2] | ZHU Bingyu, LIU Zhen, ZHANG Jingxiang. COVID-19 Detection Algorithm Combining Grad-CAM and Convolutional Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2108-2120. |
[3] | YU Huilin, CHEN Wei, WANG Qi, GAO Jianwei, WAN Huaiyu. Knowledge Graph Link Prediction Based on Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1800-1808. |
[4] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[5] | HONG Huiqun, SHEN Guiping, HUANG Fenghua. Summary of Expression Recognition Technology [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1764-1778. |
[6] | LI Yuxuan, HONG Xuehai, WANG Yang, TANG Zhengzheng, BAN Yan. Groupwise Learning to Rank Algorithm with Introduction of Activated Weighting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1594-1602. |
[7] | ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106. |
[8] | OU Yangliu, HE Xi, QU Shaojun. Fully Convolutional Neural Network with Attention Module for Semantic Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145. |
[9] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[10] | TONG Gan, HUANG Libo. Review of Winograd Fast Convolution Technique Research [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 959-971. |
[11] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[12] | ZHANG Shaowei, WANG Xin, CHEN Zirui, WANG Lin, XU Dawei, JIA Yongzhe. Survey of Supervised Joint Entity Relation Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 713-733. |
[13] | LU Zhongda, ZHANG Chunda, ZHANG Jiaqi, WANG Zifei, XU Junhua. Identification of Apple Leaf Disease Based on Dual Branch Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 917-926. |
[14] | ZHUO Tiantian, SANG Qingbing. Application of Attention Mechanism and Composite Convolution in Handwriting Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 888-897. |
[15] | MA Jinlin, ZHANG Yu, MA Ziping, MAO Kaiji. Research Progress of Lightweight Neural Network Convolution Design [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 512-528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/