Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (10): 2320-2329.DOI: 10.3778/j.issn.1673-9418.2101075
• Artificial Intelligence • Previous Articles Next Articles
Received:
2021-01-21
Revised:
2021-03-16
Online:
2022-10-01
Published:
2021-03-23
About author:
WU Tianyu, born in 1995, M.S. candidate. His research interests include artificial intelligence and pattern recognition.Supported by:
通讯作者:
+ E-mail: 6191610014@jiangnan.edu.cn作者简介:
吴天宇(1995—),男,甘肃酒泉人,硕士研究生,主要研究方向为人工智能、模式识别。基金资助:
CLC Number:
WU Tianyu, WANG Shitong. Fast Multi-view Privileged Random Vector Function Link Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2320-2329.
吴天宇, 王士同. 快速多视角特权协同随机向量函数连接网络[J]. 计算机科学与探索, 2022, 16(10): 2320-2329.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2101075
数据集 | 数量 | 类别数 | 特征A | 特征B |
---|---|---|---|---|
AwA | 6 180 | 8 | 2 000(SURF) | 252(HOG) |
NUS-WIDE | 6 265 | 7 | 225(CM55) | 73(EDH) |
Table 1 Datasets used in experiment
数据集 | 数量 | 类别数 | 特征A | 特征B |
---|---|---|---|---|
AwA | 6 180 | 8 | 2 000(SURF) | 252(HOG) |
NUS-WIDE | 6 265 | 7 | 225(CM55) | 73(EDH) |
No. | Dataset A | Dataset B | FMPRVFL | RVFL-A | RVFL-B | SVM-2K | MED-2C | PSVM-2V | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | |||
1 | chimps | panda | 90.02 | 0.008 | 87.14 | 0.027 | 74.61 | 0.021 | 86.76 | 0.028 | 86.93 | 0.027 | 90.92 | 0.023 |
2 | chimps | leopard | 90.72 | 0.024 | 86.84 | 0.018 | 71.50 | 0.037 | 85.73 | 0.034 | 82.80 | 0.040 | 87.61 | 0.043 |
3 | chimps | cat | 89.24 | 0.008 | 86.65 | 0.034 | 75.08 | 0.035 | 84.31 | 0.010 | 82.07 | 0.049 | 86.52 | 0.067 |
4 | chimps | pig | 85.13 | 0.004 | 82.09 | 0.050 | 73.56 | 0.036 | 81.88 | 0.006 | 82.86 | 0.033 | 83.81 | 0.056 |
5 | chimps | hippo | 87.34 | 0.017 | 86.84 | 0.022 | 71.50 | 0.037 | 85.59 | 0.021 | 82.82 | 0.043 | 84.45 | 0.063 |
6 | chimps | raccoon | 85.61 | 0.007 | 83.02 | 0.020 | 71.65 | 0.050 | 82.23 | 0.026 | 79.75 | 0.062 | 83.83 | 0.071 |
7 | chimps | rat | 86.15 | 0.021 | 82.36 | 0.041 | 74.24 | 0.031 | 82.24 | 0.108 | 75.12 | 0.035 | 81.16 | 0.082 |
8 | chimps | seal | 88.04 | 0.027 | 81.46 | 0.035 | 76.79 | 0.021 | 88.43 | 0.104 | 83.07 | 0.026 | 87.76 | 0.016 |
9 | panda | leopard | 91.49 | 0.009 | 88.84 | 0.014 | 69.05 | 0.042 | 88.95 | 0.019 | 84.31 | 0.026 | 90.46 | 0.012 |
10 | panda | cat | 92.31 | 0.004 | 90.04 | 0.026 | 78.33 | 0.021 | 89.63 | 0.027 | 88.03 | 0.020 | 89.53 | 0.067 |
11 | panda | pig | 87.09 | 0.020 | 83.62 | 0.025 | 76.02 | 0.027 | 84.08 | 0.020 | 78.83 | 0.042 | 83.46 | 0.035 |
12 | panda | hippo | 90.42 | 0.018 | 87.69 | 0.018 | 79.46 | 0.025 | 88.48 | 0.017 | 87.47 | 0.009 | 91.13 | 0.050 |
13 | panda | raccoon | 90.44 | 0.027 | 86.90 | 0.030 | 69.97 | 0.039 | 89.56 | 0.027 | 88.94 | 0.024 | 90.85 | 0.037 |
14 | panda | rat | 88.12 | 0.028 | 85.92 | 0.043 | 81.33 | 0.025 | 82.76 | 0.024 | 82.25 | 0.025 | 86.57 | 0.064 |
15 | panda | seal | 90.13 | 0.025 | 89.10 | 0.017 | 83.17 | 0.037 | 88.06 | 0.033 | 86.89 | 0.033 | 89.63 | 0.026 |
16 | leopard | cat | 90.80 | 0.017 | 86.94 | 0.021 | 84.37 | 0.028 | 86.84 | 0.026 | 86.15 | 0.033 | 90.69 | 0.045 |
17 | leopard | pig | 83.05 | 0.022 | 82.62 | 0.028 | 73.41 | 0.064 | 82.19 | 0.037 | 78.53 | 0.027 | 84.11 | 0.057 |
18 | leopard | hippo | 87.60 | 0.017 | 83.10 | 0.028 | 75.26 | 0.038 | 86.06 | 0.036 | 82.54 | 0.037 | 88.49 | 0.092 |
19 | leopard | raccoon | 82.79 | 0.014 | 78.25 | 0.032 | 61.44 | 0.030 | 77.19 | 0.042 | 74.54 | 0.041 | 81.21 | 0.074 |
20 | leopard | rat | 86.15 | 0.029 | 84.53 | 0.033 | 73.12 | 0.070 | 82.93 | 0.052 | 80.17 | 0.040 | 85.21 | 0.082 |
21 | leopard | seal | 90.63 | 0.006 | 86.47 | 0.027 | 78.75 | 0.028 | 88.01 | 0.033 | 87.83 | 0.045 | 88.00 | 0.091 |
22 | cat | pig | 81.75 | 0.035 | 79.27 | 0.044 | 75.20 | 0.047 | 75.68 | 0.016 | 73.92 | 0.061 | 76.80 | 0.055 |
23 | cat | hippo | 88.26 | 0.015 | 87.08 | 0.029 | 75.63 | 0.037 | 85.37 | 0.024 | 85.07 | 0.037 | 86.29 | 0.074 |
24 | cat | raccoon | 87.14 | 0.014 | 84.76 | 0.021 | 65.44 | 0.023 | 88.58 | 0.029 | 85.06 | 0.022 | 89.85 | 0.043 |
25 | cat | rat | 75.26 | 0.032 | 74.17 | 0.040 | 69.12 | 0.023 | 68.42 | 0.027 | 62.40 | 0.025 | 68.46 | 0.043 |
26 | cat | seal | 84.85 | 0.032 | 76.55 | 0.044 | 71.32 | 0.048 | 82.10 | 0.023 | 82.60 | 0.038 | 83.68 | 0.060 |
27 | pig | hippo | 78.94 | 0.050 | 77.21 | 0.055 | 71.49 | 0.045 | 73.79 | 0.023 | 71.42 | 0.037 | 74.49 | 0.066 |
28 | pig | raccoon | 81.97 | 0.018 | 78.30 | 0.034 | 69.47 | 0.059 | 81.09 | 0.038 | 76.75 | 0.016 | 79.46 | 0.065 |
29 | pig | rat | 73.18 | 0.029 | 69.21 | 0.032 | 60.43 | 0.069 | 71.43 | 0.143 | 70.52 | 0.025 | 74.31 | 0.080 |
30 | pig | seal | 80.43 | 0.045 | 78.27 | 0.045 | 75.71 | 0.023 | 77.02 | 0.020 | 71.86 | 0.037 | 77.08 | 0.092 |
31 | hippo | raccoon | 85.40 | 0.013 | 83.49 | 0.030 | 75.52 | 0.038 | 82.60 | 0.032 | 80.54 | 0.045 | 83.53 | 0.036 |
32 | hippo | rat | 84.81 | 0.011 | 82.92 | 0.019 | 76.67 | 0.021 | 76.07 | 0.018 | 72.94 | 0.035 | 75.23 | 0.056 |
33 | hippo | seal | 71.93 | 0.034 | 70.45 | 0.034 | 68.26 | 0.015 | 64.46 | 0.014 | 67.08 | 0.030 | 69.48 | 0.053 |
34 | raccoon | rat | 79.88 | 0.027 | 78.45 | 0.039 | 69.55 | 0.017 | 75.23 | 0.038 | 74.14 | 0.026 | 78.76 | 0.024 |
35 | raccoon | seal | 89.49 | 0.012 | 85.11 | 0.019 | 77.83 | 0.031 | 87.30 | 0.043 | 84.08 | 0.040 | 90.72 | 0.019 |
36 | rat | seal | 80.59 | 0.036 | 77.32 | 0.042 | 72.02 | 0.042 | 73.81 | 0.018 | 71.96 | 0.020 | 75.69 | 0.017 |
Average | 85.48 | 0.021 | 82.58 | 0.031 | 73.51 | 0.036 | 82.08 | 0.034 | 79.78 | 0.034 | 83.59 | 0.054 |
Table 2 Classification performance on AwA dataset
No. | Dataset A | Dataset B | FMPRVFL | RVFL-A | RVFL-B | SVM-2K | MED-2C | PSVM-2V | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | |||
1 | chimps | panda | 90.02 | 0.008 | 87.14 | 0.027 | 74.61 | 0.021 | 86.76 | 0.028 | 86.93 | 0.027 | 90.92 | 0.023 |
2 | chimps | leopard | 90.72 | 0.024 | 86.84 | 0.018 | 71.50 | 0.037 | 85.73 | 0.034 | 82.80 | 0.040 | 87.61 | 0.043 |
3 | chimps | cat | 89.24 | 0.008 | 86.65 | 0.034 | 75.08 | 0.035 | 84.31 | 0.010 | 82.07 | 0.049 | 86.52 | 0.067 |
4 | chimps | pig | 85.13 | 0.004 | 82.09 | 0.050 | 73.56 | 0.036 | 81.88 | 0.006 | 82.86 | 0.033 | 83.81 | 0.056 |
5 | chimps | hippo | 87.34 | 0.017 | 86.84 | 0.022 | 71.50 | 0.037 | 85.59 | 0.021 | 82.82 | 0.043 | 84.45 | 0.063 |
6 | chimps | raccoon | 85.61 | 0.007 | 83.02 | 0.020 | 71.65 | 0.050 | 82.23 | 0.026 | 79.75 | 0.062 | 83.83 | 0.071 |
7 | chimps | rat | 86.15 | 0.021 | 82.36 | 0.041 | 74.24 | 0.031 | 82.24 | 0.108 | 75.12 | 0.035 | 81.16 | 0.082 |
8 | chimps | seal | 88.04 | 0.027 | 81.46 | 0.035 | 76.79 | 0.021 | 88.43 | 0.104 | 83.07 | 0.026 | 87.76 | 0.016 |
9 | panda | leopard | 91.49 | 0.009 | 88.84 | 0.014 | 69.05 | 0.042 | 88.95 | 0.019 | 84.31 | 0.026 | 90.46 | 0.012 |
10 | panda | cat | 92.31 | 0.004 | 90.04 | 0.026 | 78.33 | 0.021 | 89.63 | 0.027 | 88.03 | 0.020 | 89.53 | 0.067 |
11 | panda | pig | 87.09 | 0.020 | 83.62 | 0.025 | 76.02 | 0.027 | 84.08 | 0.020 | 78.83 | 0.042 | 83.46 | 0.035 |
12 | panda | hippo | 90.42 | 0.018 | 87.69 | 0.018 | 79.46 | 0.025 | 88.48 | 0.017 | 87.47 | 0.009 | 91.13 | 0.050 |
13 | panda | raccoon | 90.44 | 0.027 | 86.90 | 0.030 | 69.97 | 0.039 | 89.56 | 0.027 | 88.94 | 0.024 | 90.85 | 0.037 |
14 | panda | rat | 88.12 | 0.028 | 85.92 | 0.043 | 81.33 | 0.025 | 82.76 | 0.024 | 82.25 | 0.025 | 86.57 | 0.064 |
15 | panda | seal | 90.13 | 0.025 | 89.10 | 0.017 | 83.17 | 0.037 | 88.06 | 0.033 | 86.89 | 0.033 | 89.63 | 0.026 |
16 | leopard | cat | 90.80 | 0.017 | 86.94 | 0.021 | 84.37 | 0.028 | 86.84 | 0.026 | 86.15 | 0.033 | 90.69 | 0.045 |
17 | leopard | pig | 83.05 | 0.022 | 82.62 | 0.028 | 73.41 | 0.064 | 82.19 | 0.037 | 78.53 | 0.027 | 84.11 | 0.057 |
18 | leopard | hippo | 87.60 | 0.017 | 83.10 | 0.028 | 75.26 | 0.038 | 86.06 | 0.036 | 82.54 | 0.037 | 88.49 | 0.092 |
19 | leopard | raccoon | 82.79 | 0.014 | 78.25 | 0.032 | 61.44 | 0.030 | 77.19 | 0.042 | 74.54 | 0.041 | 81.21 | 0.074 |
20 | leopard | rat | 86.15 | 0.029 | 84.53 | 0.033 | 73.12 | 0.070 | 82.93 | 0.052 | 80.17 | 0.040 | 85.21 | 0.082 |
21 | leopard | seal | 90.63 | 0.006 | 86.47 | 0.027 | 78.75 | 0.028 | 88.01 | 0.033 | 87.83 | 0.045 | 88.00 | 0.091 |
22 | cat | pig | 81.75 | 0.035 | 79.27 | 0.044 | 75.20 | 0.047 | 75.68 | 0.016 | 73.92 | 0.061 | 76.80 | 0.055 |
23 | cat | hippo | 88.26 | 0.015 | 87.08 | 0.029 | 75.63 | 0.037 | 85.37 | 0.024 | 85.07 | 0.037 | 86.29 | 0.074 |
24 | cat | raccoon | 87.14 | 0.014 | 84.76 | 0.021 | 65.44 | 0.023 | 88.58 | 0.029 | 85.06 | 0.022 | 89.85 | 0.043 |
25 | cat | rat | 75.26 | 0.032 | 74.17 | 0.040 | 69.12 | 0.023 | 68.42 | 0.027 | 62.40 | 0.025 | 68.46 | 0.043 |
26 | cat | seal | 84.85 | 0.032 | 76.55 | 0.044 | 71.32 | 0.048 | 82.10 | 0.023 | 82.60 | 0.038 | 83.68 | 0.060 |
27 | pig | hippo | 78.94 | 0.050 | 77.21 | 0.055 | 71.49 | 0.045 | 73.79 | 0.023 | 71.42 | 0.037 | 74.49 | 0.066 |
28 | pig | raccoon | 81.97 | 0.018 | 78.30 | 0.034 | 69.47 | 0.059 | 81.09 | 0.038 | 76.75 | 0.016 | 79.46 | 0.065 |
29 | pig | rat | 73.18 | 0.029 | 69.21 | 0.032 | 60.43 | 0.069 | 71.43 | 0.143 | 70.52 | 0.025 | 74.31 | 0.080 |
30 | pig | seal | 80.43 | 0.045 | 78.27 | 0.045 | 75.71 | 0.023 | 77.02 | 0.020 | 71.86 | 0.037 | 77.08 | 0.092 |
31 | hippo | raccoon | 85.40 | 0.013 | 83.49 | 0.030 | 75.52 | 0.038 | 82.60 | 0.032 | 80.54 | 0.045 | 83.53 | 0.036 |
32 | hippo | rat | 84.81 | 0.011 | 82.92 | 0.019 | 76.67 | 0.021 | 76.07 | 0.018 | 72.94 | 0.035 | 75.23 | 0.056 |
33 | hippo | seal | 71.93 | 0.034 | 70.45 | 0.034 | 68.26 | 0.015 | 64.46 | 0.014 | 67.08 | 0.030 | 69.48 | 0.053 |
34 | raccoon | rat | 79.88 | 0.027 | 78.45 | 0.039 | 69.55 | 0.017 | 75.23 | 0.038 | 74.14 | 0.026 | 78.76 | 0.024 |
35 | raccoon | seal | 89.49 | 0.012 | 85.11 | 0.019 | 77.83 | 0.031 | 87.30 | 0.043 | 84.08 | 0.040 | 90.72 | 0.019 |
36 | rat | seal | 80.59 | 0.036 | 77.32 | 0.042 | 72.02 | 0.042 | 73.81 | 0.018 | 71.96 | 0.020 | 75.69 | 0.017 |
Average | 85.48 | 0.021 | 82.58 | 0.031 | 73.51 | 0.036 | 82.08 | 0.034 | 79.78 | 0.034 | 83.59 | 0.054 |
No. | Dataset A | Dataset B | FMPRVFL | RVFL-A | RVFL-B | SVM-2K | MED-2C | PSVM-2V | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | |||
1 | birds | computer | 83.70 | 0.018 | 81.50 | 0.017 | 81.83 | 0.024 | 81.30 | 0.021 | 75.10 | 0.033 | 79.41 | 0.020 |
2 | birds | flowers | 82.34 | 0.012 | 74.74 | 0.014 | 79.81 | 0.012 | 81.48 | 0.017 | 81.12 | 0.026 | 82.27 | 0.016 |
3 | birds | lake | 75.63 | 0.011 | 74.67 | 0.014 | 70.60 | 0.023 | 68.00 | 0.014 | 68.08 | 0.037 | 72.43 | 0.012 |
4 | birds | plants | 78.04 | 0.017 | 70.56 | 0.022 | 77.53 | 0.014 | 78.95 | 0.010 | 74.56 | 0.036 | 79.76 | 0.016 |
5 | birds | sign | 77.19 | 0.029 | 75.83 | 0.027 | 69.74 | 0.035 | 67.13 | 0.009 | 67.59 | 0.042 | 71.66 | 0.026 |
6 | birds | swimmers | 90.05 | 0.013 | 86.39 | 0.008 | 85.66 | 0.011 | 87.58 | 0.030 | 86.83 | 0.042 | 88.56 | 0.028 |
7 | birds | vehicle | 83.96 | 0.018 | 82.56 | 0.006 | 80.56 | 0.015 | 81.83 | 0.021 | 89.74 | 0.052 | 83.17 | 0.026 |
8 | computer | flowers | 91.19 | 0.012 | 90.71 | 0.009 | 91.04 | 0.005 | 90.09 | 0.009 | 89.74 | 0.074 | 90.57 | 0.008 |
9 | computer | lake | 78.41 | 0.022 | 76.99 | 0.016 | 70.20 | 0.025 | 75.46 | 0.020 | 71.74 | 0.035 | 75.95 | 0.039 |
10 | computer | plants | 79.64 | 0.036 | 75.95 | 0.026 | 77.36 | 0.019 | 76.98 | 0.032 | 78.29 | 0.011 | 78.62 | 0.016 |
11 | computer | sign | 76.48 | 0.027 | 73.72 | 0.020 | 72.13 | 0.024 | 75.04 | 0.037 | 73.86 | 0.010 | 75.38 | 0.026 |
12 | computer | swimmers | 78.68 | 0.033 | 75.53 | 0.025 | 72.62 | 0.074 | 75.04 | 0.037 | 76.77 | 0.008 | 79.60 | 0.034 |
13 | computer | vehicle | 74.14 | 0.033 | 73.53 | 0.025 | 72.62 | 0.074 | 66.46 | 0.031 | 60.39 | 0.010 | 69.06 | 0.037 |
14 | flowers | lake | 85.75 | 0.004 | 84.47 | 0.006 | 83.29 | 0.008 | 83.87 | 0.008 | 83.72 | 0.008 | 84.12 | 0.013 |
15 | flowers | plants | 84.07 | 0.019 | 82.07 | 0.019 | 81.10 | 0.019 | 83.23 | 0.022 | 83.08 | 0.034 | 83.18 | 0.010 |
16 | flowers | sign | 85.07 | 0.008 | 81.83 | 0.020 | 76.95 | 0.013 | 77.39 | 0.014 | 77.67 | 0.011 | 83.18 | 0.010 |
17 | flowers | swimmers | 94.93 | 0.004 | 93.58 | 0.008 | 93.52 | 0.010 | 93.51 | 0.011 | 93.91 | 0.017 | 94.43 | 0.008 |
18 | flowers | vehicle | 92.29 | 0.010 | 89.74 | 0.010 | 89.74 | 0.010 | 91.50 | 0.006 | 90.19 | 0.019 | 91.32 | 0.011 |
19 | lake | plants | 80.62 | 0.019 | 78.21 | 0.015 | 77.89 | 0.018 | 79.33 | 0.026 | 79.26 | 0.021 | 79.74 | 0.029 |
20 | lake | sign | 77.08 | 0.011 | 75.78 | 0.008 | 67.95 | 0.027 | 71.35 | 0.017 | 68.84 | 0.026 | 72.33 | 0.017 |
21 | lake | swimmers | 84.00 | 0.035 | 82.57 | 0.027 | 80.36 | 0.031 | 80.52 | 0.019 | 81.91 | 0.018 | 84.16 | 0.011 |
22 | lake | vehicle | 79.96 | 0.035 | 77.43 | 0.035 | 78.46 | 0.031 | 79.67 | 0.021 | 76.46 | 0.009 | 81.51 | 0.034 |
23 | plants | sign | 78.89 | 0.022 | 77.60 | 0.018 | 73.93 | 0.029 | 78.23 | 0.026 | 78.88 | 0.036 | 76.71 | 0.018 |
24 | plants | swimmers | 83.81 | 0.032 | 80.03 | 0.038 | 79.14 | 0.044 | 81.68 | 0.037 | 82.40 | 0.009 | 84.07 | 0.009 |
25 | plants | vehicle | 81.61 | 0.026 | 80.75 | 0.016 | 80.49 | 0.026 | 81.73 | 0.041 | 79.54 | 0.014 | 80.56 | 0.036 |
26 | sign | swimmers | 87.39 | 0.027 | 85.11 | 0.014 | 84.34 | 0.012 | 86.47 | 0.028 | 84.74 | 0.036 | 85.70 | 0.021 |
27 | sign | swimmers | 81.00 | 0.014 | 80.21 | 0.019 | 77.31 | 0.029 | 77.47 | 0.007 | 76.16 | 0.027 | 78.08 | 0.014 |
28 | swimmers | vehicle | 80.30 | 0.032 | 75.50 | 0.018 | 74.05 | 0.013 | 76.99 | 0.045 | 74.05 | 0.016 | 78.08 | 0.014 |
Average | 82.37 | 0.021 | 79.91 | 0.018 | 78.58 | 0.024 | 79.58 | 0.022 | 78.74 | 0.026 | 80.84 | 0.020 |
Table 3 Classification performance on NUS-WIDE dataset
No. | Dataset A | Dataset B | FMPRVFL | RVFL-A | RVFL-B | SVM-2K | MED-2C | PSVM-2V | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | |||
1 | birds | computer | 83.70 | 0.018 | 81.50 | 0.017 | 81.83 | 0.024 | 81.30 | 0.021 | 75.10 | 0.033 | 79.41 | 0.020 |
2 | birds | flowers | 82.34 | 0.012 | 74.74 | 0.014 | 79.81 | 0.012 | 81.48 | 0.017 | 81.12 | 0.026 | 82.27 | 0.016 |
3 | birds | lake | 75.63 | 0.011 | 74.67 | 0.014 | 70.60 | 0.023 | 68.00 | 0.014 | 68.08 | 0.037 | 72.43 | 0.012 |
4 | birds | plants | 78.04 | 0.017 | 70.56 | 0.022 | 77.53 | 0.014 | 78.95 | 0.010 | 74.56 | 0.036 | 79.76 | 0.016 |
5 | birds | sign | 77.19 | 0.029 | 75.83 | 0.027 | 69.74 | 0.035 | 67.13 | 0.009 | 67.59 | 0.042 | 71.66 | 0.026 |
6 | birds | swimmers | 90.05 | 0.013 | 86.39 | 0.008 | 85.66 | 0.011 | 87.58 | 0.030 | 86.83 | 0.042 | 88.56 | 0.028 |
7 | birds | vehicle | 83.96 | 0.018 | 82.56 | 0.006 | 80.56 | 0.015 | 81.83 | 0.021 | 89.74 | 0.052 | 83.17 | 0.026 |
8 | computer | flowers | 91.19 | 0.012 | 90.71 | 0.009 | 91.04 | 0.005 | 90.09 | 0.009 | 89.74 | 0.074 | 90.57 | 0.008 |
9 | computer | lake | 78.41 | 0.022 | 76.99 | 0.016 | 70.20 | 0.025 | 75.46 | 0.020 | 71.74 | 0.035 | 75.95 | 0.039 |
10 | computer | plants | 79.64 | 0.036 | 75.95 | 0.026 | 77.36 | 0.019 | 76.98 | 0.032 | 78.29 | 0.011 | 78.62 | 0.016 |
11 | computer | sign | 76.48 | 0.027 | 73.72 | 0.020 | 72.13 | 0.024 | 75.04 | 0.037 | 73.86 | 0.010 | 75.38 | 0.026 |
12 | computer | swimmers | 78.68 | 0.033 | 75.53 | 0.025 | 72.62 | 0.074 | 75.04 | 0.037 | 76.77 | 0.008 | 79.60 | 0.034 |
13 | computer | vehicle | 74.14 | 0.033 | 73.53 | 0.025 | 72.62 | 0.074 | 66.46 | 0.031 | 60.39 | 0.010 | 69.06 | 0.037 |
14 | flowers | lake | 85.75 | 0.004 | 84.47 | 0.006 | 83.29 | 0.008 | 83.87 | 0.008 | 83.72 | 0.008 | 84.12 | 0.013 |
15 | flowers | plants | 84.07 | 0.019 | 82.07 | 0.019 | 81.10 | 0.019 | 83.23 | 0.022 | 83.08 | 0.034 | 83.18 | 0.010 |
16 | flowers | sign | 85.07 | 0.008 | 81.83 | 0.020 | 76.95 | 0.013 | 77.39 | 0.014 | 77.67 | 0.011 | 83.18 | 0.010 |
17 | flowers | swimmers | 94.93 | 0.004 | 93.58 | 0.008 | 93.52 | 0.010 | 93.51 | 0.011 | 93.91 | 0.017 | 94.43 | 0.008 |
18 | flowers | vehicle | 92.29 | 0.010 | 89.74 | 0.010 | 89.74 | 0.010 | 91.50 | 0.006 | 90.19 | 0.019 | 91.32 | 0.011 |
19 | lake | plants | 80.62 | 0.019 | 78.21 | 0.015 | 77.89 | 0.018 | 79.33 | 0.026 | 79.26 | 0.021 | 79.74 | 0.029 |
20 | lake | sign | 77.08 | 0.011 | 75.78 | 0.008 | 67.95 | 0.027 | 71.35 | 0.017 | 68.84 | 0.026 | 72.33 | 0.017 |
21 | lake | swimmers | 84.00 | 0.035 | 82.57 | 0.027 | 80.36 | 0.031 | 80.52 | 0.019 | 81.91 | 0.018 | 84.16 | 0.011 |
22 | lake | vehicle | 79.96 | 0.035 | 77.43 | 0.035 | 78.46 | 0.031 | 79.67 | 0.021 | 76.46 | 0.009 | 81.51 | 0.034 |
23 | plants | sign | 78.89 | 0.022 | 77.60 | 0.018 | 73.93 | 0.029 | 78.23 | 0.026 | 78.88 | 0.036 | 76.71 | 0.018 |
24 | plants | swimmers | 83.81 | 0.032 | 80.03 | 0.038 | 79.14 | 0.044 | 81.68 | 0.037 | 82.40 | 0.009 | 84.07 | 0.009 |
25 | plants | vehicle | 81.61 | 0.026 | 80.75 | 0.016 | 80.49 | 0.026 | 81.73 | 0.041 | 79.54 | 0.014 | 80.56 | 0.036 |
26 | sign | swimmers | 87.39 | 0.027 | 85.11 | 0.014 | 84.34 | 0.012 | 86.47 | 0.028 | 84.74 | 0.036 | 85.70 | 0.021 |
27 | sign | swimmers | 81.00 | 0.014 | 80.21 | 0.019 | 77.31 | 0.029 | 77.47 | 0.007 | 76.16 | 0.027 | 78.08 | 0.014 |
28 | swimmers | vehicle | 80.30 | 0.032 | 75.50 | 0.018 | 74.05 | 0.013 | 76.99 | 0.045 | 74.05 | 0.016 | 78.08 | 0.014 |
Average | 82.37 | 0.021 | 79.91 | 0.018 | 78.58 | 0.024 | 79.58 | 0.022 | 78.74 | 0.026 | 80.84 | 0.020 |
Dataset A | Dataset B | FMPRVFL | SVM-2K | MED-2C | PSVM-2V |
---|---|---|---|---|---|
computer | flowers | 0.011 | 3.261 | 134.865 | 852.122 |
computer | lake | 0.011 | 2.961 | 128.331 | 931.132 |
computer | plants | 0.014 | 4.161 | 151.412 | 762.312 |
computer | sign | 0.013 | 3.754 | 132.445 | 752.112 |
computer | swimmers | 0.029 | 4.186 | 179.323 | 834.873 |
computer | vehicle | 0.032 | 3.155 | 64.844 | 452.913 |
Average | 0.111 | 3.580 | 131.870 | 764.211 |
Table 4 Average running time on NUS-WIDE dataset
Dataset A | Dataset B | FMPRVFL | SVM-2K | MED-2C | PSVM-2V |
---|---|---|---|---|---|
computer | flowers | 0.011 | 3.261 | 134.865 | 852.122 |
computer | lake | 0.011 | 2.961 | 128.331 | 931.132 |
computer | plants | 0.014 | 4.161 | 151.412 | 762.312 |
computer | sign | 0.013 | 3.754 | 132.445 | 752.112 |
computer | swimmers | 0.029 | 4.186 | 179.323 | 834.873 |
computer | vehicle | 0.032 | 3.155 | 64.844 | 452.913 |
Average | 0.111 | 3.580 | 131.870 | 764.211 |
[1] |
PAOY H, PARK G H, SOBAJIC D J. Learning and general-ization characteristics of the random vector functional-link net[J]. Neurocomputing, 1994, 6(2): 163-180.
DOI URL |
[2] | CHENCL P, WAN J Z. A rapid learning and dynamic step-wise updating algorithm for flat neural networks and the application to time-series prediction[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1999, 29(1): 62-72. |
[3] | CHENCL P, LIU Z L. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Net-works and Learning Systems, 2018, 29(1): 10-24. |
[4] |
YANG Y, WANG H. Multi-view clustering: a survey[J]. Big Data Mining and Analytics, 2018, 1(2): 83-107.
DOI URL |
[5] | XU C, TAO D, XU C. A survey on multi-view learning[J]. arXiv:1304.5634, 2013. |
[6] | LI J, ALLINSON N M, TAO D C, et al. Multitraining sup-port vector machine for image retrieval[J]. IEEE Trans-actions on Image Processing, 2006, 15(11): 3597-3601. |
[7] | SUN S, SHAWE-TAYLOR J. Sparse semi-supervised learning using conjugate functions[J]. Journal of Machine Learning Research, 2010, 11: 2423-2455. |
[8] | SUN S. Multi-view Laplacian support vector machines[C]// LNCS 7121: Proceedings of the 7th International Confer-ence on Advanced Data Mining and Applications, Beijing, Dec 17-19, 2011. Berlin, Heidelberg: Springer, 2011: 209-222. |
[9] | LUO Y, TAO D, XU C, et al. Multiview vector-valued mani-fold regularization for multilabel image classification[J]. IEEE Transactions on Neural Networks and Learning Sys-tems, 2013, 24(5): 709-722. |
[10] |
XU C, TAO D C, XU C. Large-margin multi-view inform-ation bottleneck[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1559-1572.
DOI URL |
[11] |
VAPNIK V, VASHIST A. A new learning paradigm: learning using privileged information[J]. Neural Networks, 2009, 22(5/6): 544-557.
DOI URL |
[12] | VAPNIK V, IZMAILOV R. Learning using privileged infor-mation: similarity control and knowledge transfer[J]. Journal of Machine Learning Research, 2015, 16: 2023-2049. |
[13] | 姜志彬. 基于多视角学习和迁移学习的分类方法及应用研究[D]. 无锡: 江南大学, 2019. |
JIANG Z B. Classification method and application research based on multi-perspective learning and transfer learning[D]. Wuxi: Jiangnan University, 2019. | |
[14] | CHENG J, WANG K Q. Multi-view sampling for relevance feedback in image retrieval[C]// Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, Aug 20-24, 2006. Washington: IEEE Computer Society, 2006: 881-884. |
[15] |
SUN S L, JIN F. Robust co-training[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2011, 25(7): 1113-1126.
DOI URL |
[16] |
ZHAO J, XIE X J, XU X, et al. Multi-view learning over-view: recent progress and new challenges[J]. Information Fusion, 2017, 38: 43-54.
DOI URL |
[17] |
张丹丹, 邓赵红, 王士同. 面向多视角数据的极大熵聚类算法[J]. 计算机科学与探索, 2016, 10(4): 554-564.
DOI |
ZHANG D D, DENG Z H, WANG S T. Maximum entropy clustering algorithm for multi-view data[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(4): 554-564.
DOI |
|
[18] | MUSLEA I, MINTON S, KNOBLOCK C A. Active learning with multiple views[J]. Journal of Artificial Intelligence Re-search, 2006, 27: 203-233. |
[19] | VALENTE F, WELLEKENS C. Maximum entropy discrim-ination (MED) feature subset selection for speech recog-nition[C]// Proceedings of the 2003 IEEE Workshop on Auto-matic Speech Recognition and Understanding, St Thomas, Nov 30-Dec 4, 2003. Piscataway: IEEE, 2003: 327-332. |
[20] | SUN S L, CHAO G Q. Multi-view maximum entropy discrim-ination[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 1706-1712. |
[21] | CHAO G, SUN S. Consensus and complementarity based maximum entropy discrimination for multi-view classific-ation[J]. Information Sciences, 2016, 367: 296-310. |
[22] | XU X X, LI W, XU D. Distance metric learning using privileged information for face verification and person re-identification[J]. IEEE Transactions on Neural Networks & Learning Systems, 2015, 26(12): 3150-3162. |
[23] |
SHI J, XUE Z Y, DAI Y K, et al. Cascaded multi-column RVFL+classifier for single-modal neuroimaging-based diag-nosis of Parkinson’s disease[J]. IEEE Transactions on Bio-medical Engineering, 2018, 66(8): 2362-2371.
DOI URL |
[24] | BERK R A. Statistical learning from a regression perspe-ctive[M]. Berlin, Heidelberg: Springer, 2008. |
[25] | LANGE K, HUNTER D R, YANG I. Optimization transfer using surrogate objective functions[J]. Journal of Computa-tional & Graphical Statistics, 2000, 9(1): 1-20. |
[26] |
QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1): 1-28.
DOI URL |
[27] |
XIAN Y Q, LAMPERT C H, SCHIELE B, et al. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(9): 2251-2265.
DOI URL |
[28] | CHUA T S, TANG J H, HONG R C, et al. NUS-WIDE: a real-world web image database from National University of Singapore[C]// Proceedings of the 8th ACM International Conference on Image and Video Retrieval, Santorini Island,Jul 8-10, 2009. New York: ACM, 2009: 1-9. |
[1] | LIU Xuewen, WANG Jikui, YANG Zhengguo, LI Bing, NIE Feiping. Semi-supervised Self-Training Algorithm for Density Peak Membership Optimization [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2078-2088. |
[2] | XIE Juanying, ZHANG Kaiyun. XR-MSF-Unet: Automatic Segmentation Model for COVID-19 Lung CT Images [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1850-1864. |
[3] | CHEN Yang, WANG Shitong. Ensemble Method of Diverse Regularized Extreme Learning Machines [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1819-1928. |
[4] | YANG Zheng, DENG Zhaohong, LUO Xiaoqing, GU Xin, WANG Shitong. Target Tracking System Constructed by ELM-AE and Transfer Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1633-1648. |
[5] | DONG Wenbo, SUN Shiliang, YIN Minzhi. Research and Development of Medical Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1193-1213. |
[6] | SHEN Ruicai, ZHAI Junhai, HOU Yingzhen. Multi-discriminator Generative Adversarial Networks Based on Selective Ensemble Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1429-1438. |
[7] | XIE Xintong, HU Yueyang, LIU Xuanzhe, ZHAO Yaoshuai, JIANG Hai’ou. Rumor Detection Based on Representative User Characteristics Learning Through Propagation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1334-1342. |
[8] | ZHANG Zhuang, WANG Shitong. Ensemble Model of Takagi-Sugeno-Kang Fuzzy Classifiers for Imbalanced Data [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1374-1382. |
[9] | LIN Jiawei, WANG Shitong. Deep Adversarial-Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116. |
[10] | SUN Wu, DENG Zhaohong, LOU Qiongdan, GU Xin, WANG Shitong. Unsupervised Heterogeneous Domain Adaptation with Fuzzy Rule Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 403-412. |
[11] | ZHANG Fengyexin, WANG Jun, JIA Xiuyi, PAN Xiang, DENG Zhaohong, SHI Jun, WANG Shitong. Label Distribution Learning for Computer Aided Diagnosis of Multi-class ASD Classification [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 194-204. |
[12] | FU Bin+, WANG Zhihai, WANG Zhongfeng. Algorithm of Classifier Selection for Maximizing the Margin [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(1): 59-67. |
[13] |
PAN Shirui1, ZHANG Yang1,2+, LI Xue3, WANG Yong4.
Nearest Neighbor Algorithm for Positive and Unlabeled Learning with Uncertainty [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(9): 769-779. |
[14] | YUAN Lei1, ZHANG Yang2+, LI Mei1, LI Xue3, WANG Yong4. Programming the VFDT Algorithm in Data Stream Manage-ment System* [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(8): 673-682. |
[15] | SHI Guoqiang, NIU Changyong, FAN Ming+. Constructing Ensembles of Rule-based Classifiers Using PCA* [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(5): 455-463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/