Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (12): 2788-2796.DOI: 10.3778/j.issn.1673-9418.2104116
• Artificial Intelligence • Previous Articles Next Articles
CHEN Jie1, ZHANG Erming1, WANG Qianqian2, ZHAO Shu1,+(), ZHANG Yanping1
Received:
2021-05-08
Revised:
2021-06-25
Online:
2022-12-01
Published:
2021-06-08
About author:
CHEN Jie, born in 1982, Ph.D., lecturer, mem-ber of CCF. Her research interests include in-telligent computing, machine learning, etc.Supported by:
陈洁1, 张二明1, 王倩倩2, 赵姝1,+(), 张燕平1
通讯作者:
+E-mail: zhaoshuzs2002@hotmail.com作者简介:
陈洁(1982—),女,安徽巢湖人,博士,讲师,CCF会员,主要研究方向为智能计算、机器学习等。基金资助:
CLC Number:
CHEN Jie, ZHANG Erming, WANG Qianqian, ZHAO Shu, ZHANG Yanping. Method of K-order Graph Convolution Attribute Network Community Detection[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2788-2796.
陈洁, 张二明, 王倩倩, 赵姝, 张燕平. K阶图卷积属性网络社团检测方法[J]. 计算机科学与探索, 2022, 16(12): 2788-2796.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104116
数据集 | 节点数 | 边缘数 | 属性长度 | 社团标签 |
---|---|---|---|---|
2 708 | 5 429 | 1 433 | 7 | |
3 327 | 4 732 | 3 703 | 6 | |
19 717 | 44 338 | 500 | 3 | |
2 405 | 17 981 | 4 973 | 17 |
Table 1 Dataset details
数据集 | 节点数 | 边缘数 | 属性长度 | 社团标签 |
---|---|---|---|---|
2 708 | 5 429 | 1 433 | 7 | |
3 327 | 4 732 | 3 703 | 6 | |
19 717 | 44 338 | 500 | 3 | |
2 405 | 17 981 | 4 973 | 17 |
Methods | Input | Cora | CiteSeer | Pubmed | Wiki | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | NMI | F1 | Acc | NMI | F1 | Acc | NMI | F1 | Acc | NMI | F1 | ||
K-means | Feature | 34.65 | 16.73 | 25.42 | 38.49 | 17.02 | 30.47 | 57.32 | 29.12 | 57.35 | 33.37 | 30.20 | 24.51 |
Spectral-f | Feature | 36.26 | 15.09 | 25.64 | 46.23 | 21.19 | 33.70 | 59.91 | 32.55 | 58.61 | 41.28 | 43.99 | 25.20 |
Spectral-g | Graph | 34.19 | 19.49 | 30.17 | 25.91 | 11.84 | 29.48 | 39.74 | 3.46 | 51.97 | 23.58 | 19.28 | 17.21 |
DeepWalk | Graph | 46.74 | 31.75 | 38.06 | 36.15 | 9.66 | 26.70 | 61.86 | 16.71 | 47.06 | 38.46 | 32.38 | 25.74 |
DNGR | Graph | 49.24 | 37.29 | 37.29 | 32.59 | 18.02 | 44.19 | 45.35 | 15.38 | 17.09 | 37.58 | 35.85 | 25.38 |
GAE | Both | 53.25 | 40.69 | 41.97 | 41.26 | 18.34 | 29.13 | 64.08 | 22.97 | 49.26 | 17.33 | 11.93 | 15.35 |
VGAE | Both | 55.95 | 38.45 | 41.50 | 44.38 | 22.71 | 31.88 | 65.48 | 25.09 | 50.95 | 28.67 | 30.28 | 20.49 |
MGAE | Both | 63.43 | 45.57 | 38.01 | 63.56 | 39.75 | 39.49 | 43.88 | 8.16 | 41.98 | 50.14 | 47.97 | 39.20 |
ARGE | Both | 64.00 | 44.90 | 61.90 | 57.30 | 35.00 | 54.60 | 59.12 | 23.17 | 58.41 | 41.40 | 39.50 | 38.27 |
ARVGE | Both | 63.80 | 45.00 | 62.70 | 54.40 | 26.10 | 52.90 | 58.22 | 20.62 | 23.04 | 41.55 | 40.01 | 37.80 |
AGC | Both | 68.92 | 53.68 | 65.61 | 67.00 | 41.13 | 62.48 | 69.78 | 31.59 | 68.72 | 47.65 | 45.28 | 40.36 |
KGCN | Both | 71.21 | 53.02 | 67.19 | 68.14 | 42.14 | 63.45 | 69.79 | 32.09 | 68.82 | 60.85 | 61.88 | 55.70 |
Table 2 Comparison of algorithm results on different datasets
Methods | Input | Cora | CiteSeer | Pubmed | Wiki | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | NMI | F1 | Acc | NMI | F1 | Acc | NMI | F1 | Acc | NMI | F1 | ||
K-means | Feature | 34.65 | 16.73 | 25.42 | 38.49 | 17.02 | 30.47 | 57.32 | 29.12 | 57.35 | 33.37 | 30.20 | 24.51 |
Spectral-f | Feature | 36.26 | 15.09 | 25.64 | 46.23 | 21.19 | 33.70 | 59.91 | 32.55 | 58.61 | 41.28 | 43.99 | 25.20 |
Spectral-g | Graph | 34.19 | 19.49 | 30.17 | 25.91 | 11.84 | 29.48 | 39.74 | 3.46 | 51.97 | 23.58 | 19.28 | 17.21 |
DeepWalk | Graph | 46.74 | 31.75 | 38.06 | 36.15 | 9.66 | 26.70 | 61.86 | 16.71 | 47.06 | 38.46 | 32.38 | 25.74 |
DNGR | Graph | 49.24 | 37.29 | 37.29 | 32.59 | 18.02 | 44.19 | 45.35 | 15.38 | 17.09 | 37.58 | 35.85 | 25.38 |
GAE | Both | 53.25 | 40.69 | 41.97 | 41.26 | 18.34 | 29.13 | 64.08 | 22.97 | 49.26 | 17.33 | 11.93 | 15.35 |
VGAE | Both | 55.95 | 38.45 | 41.50 | 44.38 | 22.71 | 31.88 | 65.48 | 25.09 | 50.95 | 28.67 | 30.28 | 20.49 |
MGAE | Both | 63.43 | 45.57 | 38.01 | 63.56 | 39.75 | 39.49 | 43.88 | 8.16 | 41.98 | 50.14 | 47.97 | 39.20 |
ARGE | Both | 64.00 | 44.90 | 61.90 | 57.30 | 35.00 | 54.60 | 59.12 | 23.17 | 58.41 | 41.40 | 39.50 | 38.27 |
ARVGE | Both | 63.80 | 45.00 | 62.70 | 54.40 | 26.10 | 52.90 | 58.22 | 20.62 | 23.04 | 41.55 | 40.01 | 37.80 |
AGC | Both | 68.92 | 53.68 | 65.61 | 67.00 | 41.13 | 62.48 | 69.78 | 31.59 | 68.72 | 47.65 | 45.28 | 40.36 |
KGCN | Both | 71.21 | 53.02 | 67.19 | 68.14 | 42.14 | 63.45 | 69.79 | 32.09 | 68.82 | 60.85 | 61.88 | 55.70 |
Methods | Cora | CiteSeer | Pubmed | Wiki | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | NMI | F1 | Acc | NMI | F1 | Acc | NMI | F1 | Acc | NMI | F1 | |
Ori_1 | 46.51 | 27.84 | 45.54 | 60.76 | 33.95 | 57.45 | 60.75 | 30.61 | 59.47 | 44.50 | 47.86 | 39.40 |
Ori_k | 68.31 | 42.33 | 63.68 | 67.14 | 41.14 | 62.45 | 69.08 | 31.09 | 67.14 | 44.88 | 46.33 | 39.95 |
Re_k | 71.21 | 53.02 | 67.19 | 68.14 | 42.14 | 63.45 | 69.79 | 32.09 | 68.82 | 60.85 | 61.88 | 55.70 |
Table 3 Results of ablation analysis
Methods | Cora | CiteSeer | Pubmed | Wiki | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | NMI | F1 | Acc | NMI | F1 | Acc | NMI | F1 | Acc | NMI | F1 | |
Ori_1 | 46.51 | 27.84 | 45.54 | 60.76 | 33.95 | 57.45 | 60.75 | 30.61 | 59.47 | 44.50 | 47.86 | 39.40 |
Ori_k | 68.31 | 42.33 | 63.68 | 67.14 | 41.14 | 62.45 | 69.08 | 31.09 | 67.14 | 44.88 | 46.33 | 39.95 |
Re_k | 71.21 | 53.02 | 67.19 | 68.14 | 42.14 | 63.45 | 69.79 | 32.09 | 68.82 | 60.85 | 61.88 | 55.70 |
[1] | ZHOU Y, CHENG H, YU J X. Clustering large attributed graphs: an efficient incremental approach[C]// Proceedings of the 10th IEEE International Conference on Data Mining, Sydney, Dec 14-17, 2010. Washington: IEEE Computer So-ciety, 2010: 689-698. |
[2] | PEEL L, LARREMORE D B, CLAUSET A. The ground truth about metadata and community detection in networks[J]. arXiv:1608.05878, 2016. |
[3] | BERGENTHUM R, LORENZ R, MAUSER S. Faster unfol-ding of general petri nets based on token flows[C]// LNCS 5062: Proceedings of the 29th International Conference on Applications and Theory of Petri Nets, Xi’an, Jun 23-27, 2008. Berlin, Heidelberg: Springer, 2008: 13-32. |
[4] | CHANG J, BLEI D M. Hierarchical relational models for document networks[J]. The Annals of Applied Statistics, 2010, 48(3): 269-281. |
[5] | XIA R K, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]// Pro-ceedings of the 28th AAAI Conference on Artificial Intel-ligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 2149-2155. |
[6] | YANG C, LIU Z Y, ZHAO D L, et al. Network represen-tation learning with rich text information[C]// Proceedings of the 24th International Joint Conference on Artificial In-telligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 2111-2117. |
[7] |
BIAN Y C, LUO D S, YAN Y W, et al. Correction to: memory-based random walk for multi-query local community detec-tion[J]. Knowledge and Information Systems, 2020, 62(5): 2103-2104.
DOI URL |
[8] |
JIN D, ZHANG B B, SONG Y, et al. ModMRF: a modularity-based Markov random field method for community detec-tion[J]. Neurocomputing, 2020, 405: 218-228.
DOI URL |
[9] | JIN D, LIU Z Y, LI W H, et al. Graph convolutional net-works meet Markov random fields: semi-supervised com-munity detection in attribute networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Con-ference, the 9th AAAI Symposium on Educational Advan-ces in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 152-159. |
[10] | WANG X, JIN D, CAO X C, et al. Semantic community identification in large attribute networks[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 265-271. |
[11] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]// Proceedings of the 5th International Conference on Learning Representations, Tou-lon, Apr 24-26, 2017: 1-14. |
[12] | KIPF T N, WELLING M. Variational graph auto-encoders[J]. arXiv:1611.07308, 2016. |
[13] | PAN S R, HU R Q, LONG G D, et al. Adversarially regula-rized graph autoencoder for graph embedding[C]// Procee-dings of the 27th International Joint Conference on Artifi-cial Intelligence, Stockholm, Jul 13-19, 2018: 2609-2615. |
[14] | WANG C, PAN S R, LONG G D, et al. MGAE: margina-lized graph autoencoder for graph clustering[C]// Procee-dings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 889-898. |
[15] |
CHUNAEV P. Community detection in node-attributed so-cial networks: a survey[J]. Computer Science Review, 2020, 37: 100286.
DOI URL |
[16] | ZHU X, GHAHRAMANI Z. Learning from labels and unla-beled data with label propagation: Tech Report CMU-CALD-02-107[R]. 2002: 1-8. |
[17] | YAMAGUCHI Y, HAYASHI K. When does label propa-gation fail? A view from a network generative model[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 3224-3230. |
[18] | JIN D, YOU X X, LI W H, et al. Incorporating network em-bedding into Markov random field for better community detection[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Sympo-sium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 160-167. |
[19] | CAI X, NIE F P, HUANG H. Multi-view K-means cluste-ring on big data[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 2598-2604. |
[20] | SHEN X B, LIU W W, TSANG I W, et al. Compressed K-means for large-scale clustering[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 2527-2533. |
[21] |
ZHOU Y, CHENG H, YU J F. Graph clustering based on structural/attribute similarities[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 718-729.
DOI URL |
[22] |
WANG X, SONG J L, LU K, et al. Community detection in attributed networks based on heterogeneous vertex interac-tions[J]. Applied Intelligence, 2017, 47(4): 1270-1281.
DOI URL |
[23] | RUAN Y Y, FUHRY D, PARTHASARATHY S. Efficient community detection in large networks using content and links[C]// Proceedings of the 22nd International World Wide Web Conference, Rio de Janeiro, May 13-17, 2013. New York: ACM, 2013: 1089-1098. |
[24] | DANG T, VIENNET E. Community detection based on structural and attribute similarities[C]// Proceedings of the 6th International Conference on Digital Society, Valencia, Jan 30-Feb 4, 2012: 548-553. |
[25] | ZHANG X T, LIU H, LI Q M, et al. Attributed graph clus-tering via adaptive graph convolution[C]// Proceedings of the 28th International Joint Conference on Artificial Intel-ligence, Macao, China, Aug 10-16, 2019: 4327-4333. |
[26] | VON LUXBURG U. A tutorial on spectral clustering[J]. Sta-tistics and Computing, 2007, 17(4): 395-416. |
[27] | AGGARWAL C C, REDDY C K. Data clustering: algori-thms and applications[M]. Boca Raton: CRC Press, 2014. |
[1] | ZHAN Tianming, SONG Bo, SUN Le, WAN Minghua, YANG Guowei. Hyperspectral Change Detection Using Collaborative Sparsity and Nonlocal Low-Rank Tensor [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 448-457. |
[2] | DUAN Xiangyu, YUAN Guan, MENG Fanrong. Dynamic Community Detection: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 612-630. |
[3] | XING Changzheng, ZHAO Hongbao, ZHANG Quangui, GUO Yalan. Review Text Hierarchical Attention and Outer Product for Recommendation Method [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 947-957. |
[4] | FENG Yong, ZHANG Bingru, XU Hongyan, WANG Rongbing, ZHANG Yonggang. Community Detection Algorithms Combining Improved Differential Evolution and Modularity Density [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 1070-1080. |
[5] | CHEN Kejia, CHEN Liming, WU Tong. Survey on Community Detection in Multi-layer Networks [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1801-1812. |
[6] | REN Hao, LIU Baisong, SUN Jinyang. Advances and Perspectives on Knowledge Transfer Based Cross-Domain Recom-mendation [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1813-1827. |
[7] | JIANG Miaomiao, SUN Gengxin, BIN Sheng. Community Detection Algorithm in Multiple Relationships Online Social Network [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1134-1144. |
[8] | XU Yi, LI Beibei, SONG Wei. Research on Improved Deep Belief Network Classification Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 596-607. |
[9] | FENG Lizhou, QIN Yue, YANG Guijun. Community Detection Algorithm with Difference of Node-Local Fiedler Vector Centrality [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(12): 2029-2042. |
[10] | LI Chunying, TANG Zhikang, TANG Yong, ZHAO Jiandong, HUANG Yonghang. Community Detection Algorithm with Local-First Approach in Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(8): 1263-1277. |
[11] | WANG Hongjie, TENG Fei, LI Tianrui. Incremental Learning Algorithm of Community Detection under Guidance of Modularity [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(4): 556-564. |
[12] | SHEN Guilan, JIA Caiyan, YU Jian, YANG Xiaoping. Semantic Community Detection Algorithm for Large Scale Information Network [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(4): 565-576. |
[13] | MAO Yiyu, LIU Jianxun, HU Rong, TANG Mingdong, SHI Min. Sigmoid Function-Based Web Service Collaborative Filtering Recommendation Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(2): 314-322. |
[14] | ZHOU Yang, CHEN Xiaoyun, CHENG Jianjun, LIU Wei, MIAO Haifei. Bisection Spectral Community-Detection Methods Using Optimal Eigenvectors [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(12): 1897-1906. |
[15] | LI Yafang, JIA Caiyan, YU Jian. Survey on Community Detection Algorithms Using Nonnegative Matrix Factorization Model [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(1): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/