Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (1): 41-58.DOI: 10.3778/j.issn.1673-9418.2110003
• Surveys and Frontiers • Previous Articles Next Articles
LI Kecen1, WANG Xiaoqiang1,+(), LIN Hao2, LI Leixiao3, YANG Yanyan3, MENG Chuang3, GAO Jing4
Received:
2021-09-17
Revised:
2021-11-08
Online:
2022-01-01
Published:
2021-11-20
About author:
LI Kecen, born in 1997, M.S. candidate. Her research interests include deep learning and object detection.Supported by:
李科岑1, 王晓强1,+(), 林浩2, 李雷孝3, 杨艳艳3, 孟闯3, 高静4
通讯作者:
+ E-mail: wangxiaoqiang@imut.edu.cn作者简介:
李科岑(1997—),女,山西人,硕士研究生,主要研究方向为深度学习、目标检测。基金资助:
CLC Number:
LI Kecen, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, MENG Chuang, GAO Jing. Survey of One-Stage Small Object Detection Methods in Deep Learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 41-58.
李科岑, 王晓强, 林浩, 李雷孝, 杨艳艳, 孟闯, 高静. 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索, 2022, 16(1): 41-58.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2110003
文献 | 年份 | 骨干网络 | 方法 | 优点 | 局限性 |
---|---|---|---|---|---|
Adamdad[ | 2019 | MobileNet | 该模型将YOLO V3中的骨干网络修改为MobileNet网络,去掉了原网络中的全连接层和SoftMax层 | 避免了普通卷积层中任意卷积核都需要对所有通道进行操作的缺陷 | 下采样操作导致浅层特征信息被忽略;待检目标被遮挡时,模型检测精度较低 |
Li等人[ | 2021 | Shuffle_SENet | 在ShuffleNet模块之后引入SENet,使用全局平均池化将信道空间特征转化为全局特征,然后使用FC层降低模型复杂度 | 使用较少的组卷积来最小化内存访问成本,在保证速度的同时提升了模型的准确性 | 易产生边界效应,某个输出通道可能仅来自输入通道的一部分 |
YOLO V4[ | 2020 | CSPDarkNet-53 | 包含29个3×3的卷积层,725×725大小的感受野以及2.76×107个参数 | 具有更大的感受野以及大量参数模型,能够在一张图像上检测不同尺寸的多个物体 | 采用CIoU损失,不能同时增大或缩小长和宽,导致收敛速度减慢 |
谢俊章等人[ | 2021 | CSPDarkNet-53 | 修改残差卷积次数为(×1,×3,×4,×6,×3),结合PANet,使用残差连接代替连续卷积操作,生成3个不同尺度的特征图 | 并行提取目标的类别和位置信息,适用于密集分布和混合分布目标 | 模型无法达到较高的检测精度 |
YOLO V5[ | 2020 | Focus+CSP1_X | Focus模块进行切片操作,CSP1_X借鉴CSPNet,由3个卷积层和X个Res unint模块拼接组成 | 使用更轻量级的网络,模型简单,速度更快 | 通过长宽比筛选并过滤了大小和长宽比较极端的真实目标框 |
Pan等人[ | 2019 | DenseNet | 在每个dense block中设置相同的特征图输出,每个dense block之间增加1×1卷积 | 减少了冗余参数,避免了梯度消失问题 | 与YOLOv3_Tiny相比,检测速度较慢,占用内存较大 |
李航等人[ | 2020 | slim-densenet | 采用跳跃式连接的方式,使得特征可以跳过部分网络直接传递至较深的网络层,并将7×7、5×5和3×3卷积换为深度可分离卷积 | 减少参数量,加速特征在网络中的传递,减轻了梯度消失问题 | 模型通道冗余,可通过剪枝操作压缩模型,进一步提升训练速度 |
齐榕等人[ | 2020 | MobileNet | 在Tiny-YOLO V3的基础上修改骨干网络为MobileNet,将原来的双尺度预测变为三尺度预测 | 适应不同类型的物体,增加网络层数,提高了检测精度 | 未考虑复杂环境下的目标,对于极端拍摄环境易造成漏检 |
郑秋梅等人[ | 2020 | DarkNet-50 | 过渡层使用1×1和3×3交替卷积,利用ResNet进行特征提取,并去除YOLO检测前的两组卷积层 | 避免了下采样操作导致的信息丢失问题,注重浅层特征信息,去除了冗余卷积层 | 依赖于车辆运动信息,模型泛化能力弱 |
Table 1 Optimizing backbone network in YOLO series models
文献 | 年份 | 骨干网络 | 方法 | 优点 | 局限性 |
---|---|---|---|---|---|
Adamdad[ | 2019 | MobileNet | 该模型将YOLO V3中的骨干网络修改为MobileNet网络,去掉了原网络中的全连接层和SoftMax层 | 避免了普通卷积层中任意卷积核都需要对所有通道进行操作的缺陷 | 下采样操作导致浅层特征信息被忽略;待检目标被遮挡时,模型检测精度较低 |
Li等人[ | 2021 | Shuffle_SENet | 在ShuffleNet模块之后引入SENet,使用全局平均池化将信道空间特征转化为全局特征,然后使用FC层降低模型复杂度 | 使用较少的组卷积来最小化内存访问成本,在保证速度的同时提升了模型的准确性 | 易产生边界效应,某个输出通道可能仅来自输入通道的一部分 |
YOLO V4[ | 2020 | CSPDarkNet-53 | 包含29个3×3的卷积层,725×725大小的感受野以及2.76×107个参数 | 具有更大的感受野以及大量参数模型,能够在一张图像上检测不同尺寸的多个物体 | 采用CIoU损失,不能同时增大或缩小长和宽,导致收敛速度减慢 |
谢俊章等人[ | 2021 | CSPDarkNet-53 | 修改残差卷积次数为(×1,×3,×4,×6,×3),结合PANet,使用残差连接代替连续卷积操作,生成3个不同尺度的特征图 | 并行提取目标的类别和位置信息,适用于密集分布和混合分布目标 | 模型无法达到较高的检测精度 |
YOLO V5[ | 2020 | Focus+CSP1_X | Focus模块进行切片操作,CSP1_X借鉴CSPNet,由3个卷积层和X个Res unint模块拼接组成 | 使用更轻量级的网络,模型简单,速度更快 | 通过长宽比筛选并过滤了大小和长宽比较极端的真实目标框 |
Pan等人[ | 2019 | DenseNet | 在每个dense block中设置相同的特征图输出,每个dense block之间增加1×1卷积 | 减少了冗余参数,避免了梯度消失问题 | 与YOLOv3_Tiny相比,检测速度较慢,占用内存较大 |
李航等人[ | 2020 | slim-densenet | 采用跳跃式连接的方式,使得特征可以跳过部分网络直接传递至较深的网络层,并将7×7、5×5和3×3卷积换为深度可分离卷积 | 减少参数量,加速特征在网络中的传递,减轻了梯度消失问题 | 模型通道冗余,可通过剪枝操作压缩模型,进一步提升训练速度 |
齐榕等人[ | 2020 | MobileNet | 在Tiny-YOLO V3的基础上修改骨干网络为MobileNet,将原来的双尺度预测变为三尺度预测 | 适应不同类型的物体,增加网络层数,提高了检测精度 | 未考虑复杂环境下的目标,对于极端拍摄环境易造成漏检 |
郑秋梅等人[ | 2020 | DarkNet-50 | 过渡层使用1×1和3×3交替卷积,利用ResNet进行特征提取,并去除YOLO检测前的两组卷积层 | 避免了下采样操作导致的信息丢失问题,注重浅层特征信息,去除了冗余卷积层 | 依赖于车辆运动信息,模型泛化能力弱 |
文献 | 年份 | 骨干网络 | 方法 | 优点 | 局限性 |
---|---|---|---|---|---|
Fu等人[ | 2017 | ResNet101 | 在ResNet101后增加残差块,并使用卷积层3、5、6、7、8、9的输出作为预测层的输入;增加反卷积模块和预测模块 | 相比SSD,对小目标的检测效果得到显著提升 | 模型检测速度远不及SSD检测模型 |
Shen等人[ | 2017 | DenseNet | 对DenseNet变形,包含Stem块、4个密集连接块、2个transition layer以及2个transition w/o pooling layer | 缓解梯度消失,保证特征图分辨率,增加模型鲁棒性 | 预训练模型大,参数多,优化空间存在差异,应用领域受限 |
张侣等人[ | 2021 | Res-Am | 一条独立的支路进行LCBAM操作,另一支路进行两次残差连接,最后使用Add进行特征融合 | 增强了网络的特征提取能力,引入注意力机制进行特征自适应学习,减少数据冗余 | 模型结构较复杂,较难满足网络实时性要求 |
赵鹏飞等人[ | 2021 | I-Darknet53 | 将1×1后的卷积层分为s个宽、高相同的通道组,输出包含不同感受野大小的组合 | 扩展网络宽度,提取更多全局信息,提升骨干网络的特征提取能力 | 在一定程度上加重了模型训练参数,速度减慢 |
奚琦等人[ | 2021 | DenseNet | 采用3个连续的3×3卷积核代替7×7卷积核,得到19×19像素的特征图 | 减少参数,降低输入图像特征信息的消耗,最大程度地保留了目标细节信息 | 需进行多次concat操作,数据需多次复制,增加显存消耗 |
徐先峰等人[ | 2020 | MobileNet | 构建深度可分离卷积,将Conv11和Conv13卷积层送入预测器预测 | 减少参数,降低模型复杂度,降低内存占用空间 | 检测精度不及SSD,当目标遮挡面积较大时容易产生漏检 |
Lu等人[ | 2019 | ResNet | 将SSD中的VGG16至Conv8_2网络框架换为ResNet网络,对38×38、19×19、10×10、5×5、3×3、1×1像素的特征图进行检测 | 在复杂环境下学习更多特征,解决了网络退化的问题 | 网络层数增加,训练参数增多 |
Table 2 Optimizing SSD backbone network
文献 | 年份 | 骨干网络 | 方法 | 优点 | 局限性 |
---|---|---|---|---|---|
Fu等人[ | 2017 | ResNet101 | 在ResNet101后增加残差块,并使用卷积层3、5、6、7、8、9的输出作为预测层的输入;增加反卷积模块和预测模块 | 相比SSD,对小目标的检测效果得到显著提升 | 模型检测速度远不及SSD检测模型 |
Shen等人[ | 2017 | DenseNet | 对DenseNet变形,包含Stem块、4个密集连接块、2个transition layer以及2个transition w/o pooling layer | 缓解梯度消失,保证特征图分辨率,增加模型鲁棒性 | 预训练模型大,参数多,优化空间存在差异,应用领域受限 |
张侣等人[ | 2021 | Res-Am | 一条独立的支路进行LCBAM操作,另一支路进行两次残差连接,最后使用Add进行特征融合 | 增强了网络的特征提取能力,引入注意力机制进行特征自适应学习,减少数据冗余 | 模型结构较复杂,较难满足网络实时性要求 |
赵鹏飞等人[ | 2021 | I-Darknet53 | 将1×1后的卷积层分为s个宽、高相同的通道组,输出包含不同感受野大小的组合 | 扩展网络宽度,提取更多全局信息,提升骨干网络的特征提取能力 | 在一定程度上加重了模型训练参数,速度减慢 |
奚琦等人[ | 2021 | DenseNet | 采用3个连续的3×3卷积核代替7×7卷积核,得到19×19像素的特征图 | 减少参数,降低输入图像特征信息的消耗,最大程度地保留了目标细节信息 | 需进行多次concat操作,数据需多次复制,增加显存消耗 |
徐先峰等人[ | 2020 | MobileNet | 构建深度可分离卷积,将Conv11和Conv13卷积层送入预测器预测 | 减少参数,降低模型复杂度,降低内存占用空间 | 检测精度不及SSD,当目标遮挡面积较大时容易产生漏检 |
Lu等人[ | 2019 | ResNet | 将SSD中的VGG16至Conv8_2网络框架换为ResNet网络,对38×38、19×19、10×10、5×5、3×3、1×1像素的特征图进行检测 | 在复杂环境下学习更多特征,解决了网络退化的问题 | 网络层数增加,训练参数增多 |
文献 | 骨干网络 | 速度/(frame/s) | mAP/% | ||
---|---|---|---|---|---|
VOC2007 | VOC2012 | MS COCO | |||
DSSD321[ | ResNet-101 | 9.5 | 78.60 | 76.3 | 33.20 |
DSSD513[ | ResNet-101 | 5.5 | 81.50 | 80.8 | 33.20 |
Shen等人[ | DenseNet | 17.4 | 77.70 | 76.3 | 29.30 |
Adamdad[ | MobileNet | 29.0 | 64.22 | — | — |
齐榕等人[ | MobileNet | — | 73.30 | — | 40.20 |
Li等人[ | Shuffle_SENet | 29.0 | 64.70 | — | — |
YOLOv3_Tiny | Darknet-Tiny | 25.0 | 58.20 | — | 33.30 |
YOLO V5l[ | CSPNet | 99.0 | — | — | 48.80 |
Pan等人[ | DenseNet | 12.0 | 65.93 | — | — |
张侣等人[ | Res-Am | 51.0 | 71.40 | — | — |
赵鹏飞等人[ | I-Darknet53 | 32.0 | 82.30 | — | — |
奚琦等人[ | DenseNet | 58.0 | 82.30 | — | — |
Cheng等人[ | MobileNetV2-FPN | 97.0 | 73.80 | 71.4 | — |
李文涛等人[ | ResNet | 30.0 | 82.70 | — | — |
Zhai等人[ | DenseNet-S-32-1 | 11.6 | 78.90 | 76.5 | 29.50 |
Table 3 Results of different algorithms in public datasets
文献 | 骨干网络 | 速度/(frame/s) | mAP/% | ||
---|---|---|---|---|---|
VOC2007 | VOC2012 | MS COCO | |||
DSSD321[ | ResNet-101 | 9.5 | 78.60 | 76.3 | 33.20 |
DSSD513[ | ResNet-101 | 5.5 | 81.50 | 80.8 | 33.20 |
Shen等人[ | DenseNet | 17.4 | 77.70 | 76.3 | 29.30 |
Adamdad[ | MobileNet | 29.0 | 64.22 | — | — |
齐榕等人[ | MobileNet | — | 73.30 | — | 40.20 |
Li等人[ | Shuffle_SENet | 29.0 | 64.70 | — | — |
YOLOv3_Tiny | Darknet-Tiny | 25.0 | 58.20 | — | 33.30 |
YOLO V5l[ | CSPNet | 99.0 | — | — | 48.80 |
Pan等人[ | DenseNet | 12.0 | 65.93 | — | — |
张侣等人[ | Res-Am | 51.0 | 71.40 | — | — |
赵鹏飞等人[ | I-Darknet53 | 32.0 | 82.30 | — | — |
奚琦等人[ | DenseNet | 58.0 | 82.30 | — | — |
Cheng等人[ | MobileNetV2-FPN | 97.0 | 73.80 | 71.4 | — |
李文涛等人[ | ResNet | 30.0 | 82.70 | — | — |
Zhai等人[ | DenseNet-S-32-1 | 11.6 | 78.90 | 76.5 | 29.50 |
文献 | 算法 | 速度/(frame/s) | mAP/% | |
---|---|---|---|---|
VOC2007 | COCO | |||
李文涛等人[ | KNCA-Fusion | 30.0 | 82.70 | — |
赵鹏飞等人[ | — | 32.0 | 82.30 | — |
徐诚极等人[ | Attention- YOLO-A | 26.0 | 81.70 | 32.6 |
张陶宁等人[ | MSFAN | 46.0 | 75.50 | 33.6 |
Li等人[ | Attention-YOLO-B | 25.0 | 81.90 | 33.5 |
于敏等人[ | 改进型RetinaNet | — | 79.50 | 40.9 |
刘建政等人[ | FIENet | 36.0 | 82.30 | 33.8 |
张海涛等人[ | — | 25.0 | 79.70 | — |
Pan等人[ | ADFPNet300 | 62.5 | 81.10 | 31.8 |
ADFPNet512 | 43.5 | 82.50 | 36.4 | |
Zhu等人[ | ODMC300 | 34.8 | 79.60 | 30.2 |
ODMC512 | 14.5 | 81.80 | 34.6 | |
赵文清等人[ | 改进型SSD300 | 33.0 | 80.60 | — |
改进型SSD321 | 30.0 | 81.50 | ||
改进型SSD512 | 12.0 | 82.50 | ||
鞠默然等人[ | AM-YOLO V3 416 | 38.9 | 82.69 | — |
AM-YOLO V3 544 | 26.5 | 83.43 |
Table 4 Test results of using attention in public datasets
文献 | 算法 | 速度/(frame/s) | mAP/% | |
---|---|---|---|---|
VOC2007 | COCO | |||
李文涛等人[ | KNCA-Fusion | 30.0 | 82.70 | — |
赵鹏飞等人[ | — | 32.0 | 82.30 | — |
徐诚极等人[ | Attention- YOLO-A | 26.0 | 81.70 | 32.6 |
张陶宁等人[ | MSFAN | 46.0 | 75.50 | 33.6 |
Li等人[ | Attention-YOLO-B | 25.0 | 81.90 | 33.5 |
于敏等人[ | 改进型RetinaNet | — | 79.50 | 40.9 |
刘建政等人[ | FIENet | 36.0 | 82.30 | 33.8 |
张海涛等人[ | — | 25.0 | 79.70 | — |
Pan等人[ | ADFPNet300 | 62.5 | 81.10 | 31.8 |
ADFPNet512 | 43.5 | 82.50 | 36.4 | |
Zhu等人[ | ODMC300 | 34.8 | 79.60 | 30.2 |
ODMC512 | 14.5 | 81.80 | 34.6 | |
赵文清等人[ | 改进型SSD300 | 33.0 | 80.60 | — |
改进型SSD321 | 30.0 | 81.50 | ||
改进型SSD512 | 12.0 | 82.50 | ||
鞠默然等人[ | AM-YOLO V3 416 | 38.9 | 82.69 | — |
AM-YOLO V3 544 | 26.5 | 83.43 |
文献 | 算法 | 特征融合策略 | 速度/(frame/s) | mAP/% | ||
---|---|---|---|---|---|---|
VOC2007 | VOC2012 | COCO | ||||
Li等人[ | FSSD512 | 将Conv4_3、Fc7以及Conv7_2的特征图进行串联融合操作 | 35.7 | 80.9 | 82.4 | 31.8 |
赵鹏飞等人[ | — | 采用多尺度空洞卷积级联扩大特征图的感受野,然后使用1×1卷积将特征信息融合;并将38×38大小的特征图与10×10和19×19的特征图拼接,最后采用ECAM模块进行通道加权 | 32.0 | 82.3 | — | — |
于敏等人[ | 改进型RetinaNet | 设计了一个自底向上的路径聚合模块,将聚合后的结果经过缩放整合与优化,最后得到多特征{M3,M4,M5,M6,M7},并与N3~N7的特征层再次相加融合 | — | 79.5 | — | 40.9 |
刘建政等人[ | FIENet | 将Conv4_3和Fc7两个特征层融合,增加不同特征层之间的特征映射关系;将输入通道通过1×1卷积分成4份之后进行级联,增强细节语义信息 | 36.1 | 82.3 | — | 33.8 |
Shi等人[ | FFESSD300 FFESSD512 | 设计了两种不同模式的FFM模块,在其中一种FFM模块中利用反卷积调整特征图大小;同时,设计了浅层特征增强和深层特征增强模块 | 54.3 30.2 | 79.1 81.8 | — | — |
Woo等人[ | StairNet | 通过反卷积与浅层特征信息融合,同时将融合后的特征传递到下一个反卷积层,以自顶向下的方式增强目标语义信息 | 30.0 | 78.8 | 76.4 | 33.6 |
张思宇等人[ | hgSSD | 在SSD300的基础上对不同尺度的特征图进行反卷积操作与浅层特征融合,并在不同尺度的特征图上进行特征预测 | 36.0 | 82.3 | 82.3 | 33.8 |
王燕妮等人[ | 改进的SSD | 结合CSPNet的思想设计跳变连接网络,将特征图划分为两个分支,通过跨阶段层次结构合并 | 37.3 | 79.6 | — | — |
Table 5 Test results of different feature fusion strategies in public datasets
文献 | 算法 | 特征融合策略 | 速度/(frame/s) | mAP/% | ||
---|---|---|---|---|---|---|
VOC2007 | VOC2012 | COCO | ||||
Li等人[ | FSSD512 | 将Conv4_3、Fc7以及Conv7_2的特征图进行串联融合操作 | 35.7 | 80.9 | 82.4 | 31.8 |
赵鹏飞等人[ | — | 采用多尺度空洞卷积级联扩大特征图的感受野,然后使用1×1卷积将特征信息融合;并将38×38大小的特征图与10×10和19×19的特征图拼接,最后采用ECAM模块进行通道加权 | 32.0 | 82.3 | — | — |
于敏等人[ | 改进型RetinaNet | 设计了一个自底向上的路径聚合模块,将聚合后的结果经过缩放整合与优化,最后得到多特征{M3,M4,M5,M6,M7},并与N3~N7的特征层再次相加融合 | — | 79.5 | — | 40.9 |
刘建政等人[ | FIENet | 将Conv4_3和Fc7两个特征层融合,增加不同特征层之间的特征映射关系;将输入通道通过1×1卷积分成4份之后进行级联,增强细节语义信息 | 36.1 | 82.3 | — | 33.8 |
Shi等人[ | FFESSD300 FFESSD512 | 设计了两种不同模式的FFM模块,在其中一种FFM模块中利用反卷积调整特征图大小;同时,设计了浅层特征增强和深层特征增强模块 | 54.3 30.2 | 79.1 81.8 | — | — |
Woo等人[ | StairNet | 通过反卷积与浅层特征信息融合,同时将融合后的特征传递到下一个反卷积层,以自顶向下的方式增强目标语义信息 | 30.0 | 78.8 | 76.4 | 33.6 |
张思宇等人[ | hgSSD | 在SSD300的基础上对不同尺度的特征图进行反卷积操作与浅层特征融合,并在不同尺度的特征图上进行特征预测 | 36.0 | 82.3 | 82.3 | 33.8 |
王燕妮等人[ | 改进的SSD | 结合CSPNet的思想设计跳变连接网络,将特征图划分为两个分支,通过跨阶段层次结构合并 | 37.3 | 79.6 | — | — |
数据集名称 | 图像总数 | 实例数 | 类别数量 | 年份 | 应用场景 |
---|---|---|---|---|---|
EuroCity Persons[ | 47 300 | 238 200 | 7 | 2019 | 行人检测 |
DOTA[ | 2 806 | 188 282 | 15 | 2018 | 航空图像检测 |
WIDER FACE[ | 32 203 | 393 703 | 60 | 2016 | 人脸检测 |
CityPersons[ | 5 000 | 约35 000 | 4 | 2017 | 行人检测 |
TinyPerson[ | 1 610 | 72 651 | 5 | 2020 | 航空图像中的行人检测 |
Behrendt[ | 8 334 | 13 493 | 4 | 2017 | 交通灯检测 |
AI-TOD[ | 28 036 | 700 621 | 8 | 2021 | 航空图像检测 |
iSAID[ | 2 806 | 655 451 | 15 | 2019 | 航空图像检测 |
WiderPerson[ | 13 382 | 399 786 | 5 | 2019 | 行人检测 |
DeepScores[ | 300 000 | 数百万 | 118 | 2018 | 乐谱图像检测 |
Table 6 Small object detection datasets
数据集名称 | 图像总数 | 实例数 | 类别数量 | 年份 | 应用场景 |
---|---|---|---|---|---|
EuroCity Persons[ | 47 300 | 238 200 | 7 | 2019 | 行人检测 |
DOTA[ | 2 806 | 188 282 | 15 | 2018 | 航空图像检测 |
WIDER FACE[ | 32 203 | 393 703 | 60 | 2016 | 人脸检测 |
CityPersons[ | 5 000 | 约35 000 | 4 | 2017 | 行人检测 |
TinyPerson[ | 1 610 | 72 651 | 5 | 2020 | 航空图像中的行人检测 |
Behrendt[ | 8 334 | 13 493 | 4 | 2017 | 交通灯检测 |
AI-TOD[ | 28 036 | 700 621 | 8 | 2021 | 航空图像检测 |
iSAID[ | 2 806 | 655 451 | 15 | 2019 | 航空图像检测 |
WiderPerson[ | 13 382 | 399 786 | 5 | 2019 | 行人检测 |
DeepScores[ | 300 000 | 数百万 | 118 | 2018 | 乐谱图像检测 |
[1] | GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. arXiv:1512.07108, 2015. |
[2] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788. |
[3] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6517-6525. |
[4] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. |
[5] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. |
[6] | FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017. |
[7] | SHEN Z Q, LIU Z, LI J G, et al. DSOD: learning deeply supervised object detectors from scratch[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1937-1945. |
[8] | JEONG J, PARK H, KWAK N. Enhancement of SSD by concatenating feature maps for object detection[J]. arXiv:1705.09587, 2017. |
[9] | LI Z X, ZHOU F Q. FSSD: feature fusion single shot multibox detector[J]. arXiv:1712.00960, 2018. |
[10] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2999-3007. |
[11] | 王迪聪, 白晨帅, 邬开俊. 基于深度学习的视频目标检测综述[J]. 计算机科学与探索, 2021, 15(9):1563-1577. |
WANG D C, BAI C S, WU K J. Survey of video object detection based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9):1563-1577. | |
[12] | 史彩娟, 张卫明, 陈厚儒, 等. 基于深度学习的显著性目标检测综述[J]. 计算机科学与探索, 2021, 15(2):219-232. |
SHI C J, ZHANG W M, CHEN H R, et al. Survey of salient object detection based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2):219-232. | |
[13] | 蔡强, 刘亚奇, 曹健, 等. 图像目标类别检测综述[J]. 计算机科学与探索, 2015, 9(3):257-265. |
CAI Q, LIU Y Q, CAO J, et al. Review on object class detection of images[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(3):257-265. | |
[14] | 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8):10-25. |
XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8):10-25. | |
[15] | 谢文亮, 朱丹, 佟新鑫. 一种基于视觉注意的小目标检测方法[J]. 计算机工程与应用, 2013, 49(12):125-128. |
XIE W L, ZHU D, TONG X X. Small target detection method based on visual attention[J]. Computer Engineering and Applications, 2013, 49(12):125-128. | |
[16] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755. |
[17] | CHEN C, LIU M Y, TUZEL O, et al. R-CNN for small object detection[C]// Proceedings of the 13th Asian Conference on Computer Vision, Taipei, China, Nov 20-24, 2016. Cham: Springer, 2016: 214-230. |
[18] | BRAUN M, KREBS S, FLOHR F, et al. The EuroCity persons dataset: a novel benchmark for object detection[J]. arXiv.1805.07193, 2018. |
[19] | XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 3974-3983. |
[20] | YANG S, LUO P, LOY C C, et al. WIDER FACE: a face detection benchmark[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 5525-5533. |
[21] | ZHANG S, BENENSON R, SCHIELE B. CityPersons: a diverse dataset for pedestrian detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3213-3221. |
[22] | YU X, GONG Y, JIANG N, et al. Scale match for tiny person detection[J]. arXiv:1912.10664, 2019. |
[23] | MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967: 281-297. |
[24] | KE W, ZHANG T, HUANG Z, et al. Multiple anchor learning for visual object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10206-10215. |
[25] | 周慧, 严凤龙, 褚娜, 等. 一种改进复杂场景下小目标检测模型的方法[J/OL]. 计算机工程与应用 [2021-09-04]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210419.1404.049.html. |
ZHOU H, YAN F L, CHU N, et al. An approach to improve detection model for small object in complex scenes[J/OL]. Computer Engineering and Applications [2021-09-04]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210419.1404.049.html. | |
[26] | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, 1996. Menlo Park: AAAI, 1996: 226-231. |
[27] | 岳晓新, 贾君霞, 陈喜东, 等. 改进YOLO V3的道路小目标检测[J]. 计算机工程与应用, 2020, 56(21):218-223. |
YUE X X, JIA J X, CHEN X D, et al. Road small target detection algorithm based on improved YOLO V3[J]. Computer Engineering and Applications, 2020, 56(21):218-223. | |
[28] | 李云红, 张轩, 李传真, 等. 融合DBSCAN的改进YOLOv3目标检测算法[J/OL]. 计算机工程与应用 [2021-09-04]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210327.1437.002.html. |
LI Y H, ZHANG X, LI C Z, et al. Improved YOLOv3 target detection algorithm combined with DBSCAN[J/OL]. Computer Engineering and Applications [2021-09-04]. . | |
[29] | 罗建华, 黄俊, 白鑫宇, 改进YOLOv3的道路小目标检测方法[J/OL]. 小型微型计算机系统 [2021-09-12]. http://kns.cnki.net/kcms/detail/21.1106.TP.20210420.1111.023.html. |
LUO J H, HUANG J, BAI X Y. Road small target detection method based on improved YOLOv3[J/OL]. Journal of Chinese Computer Systems [2021-09-12]. http://kns.cnki.net/kcms/detail/21.1106.TP.20210420.1111.023.html. | |
[30] | 刘家乐, 吴怀宇, 陈志环. 改进YOLOv3的工业指针式仪表检测方法[J]. 计算机工程与设计, 2021, 42(7):2001-2008. |
LIU J L, WU H Y, CHEN Z H. Improved YOLOv3 industrial pointer instrument detection method[J]. Computer Engineering and Design, 2021, 42(7):2001-2008. | |
[31] | MU X, LIN Y, LIU J, et al. Surface navigation target detection and recognition based on SSD[C]// Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering, Xiamen, Oct 18-20, 2019. Washington: IEEE Computer Society, 2019: 649-653. |
[32] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv1409. 1556, 2014. |
[33] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
DOI URL |
[34] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. |
[35] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017. |
[36] | HUANG G, LIU Z, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269. |
[37] | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-8. |
[38] | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 6848-6856. |
[39] | ADAMDAD. Keras-YOLOv3-mobilenet.[EB/OL]. (2019)[2021-08-20]. https://github.com/Adamdad/keras-YOLOv3-mobilenet. |
[40] | 王建军, 魏江, 梅少辉, 等. 面向遥感图像小目标检测的改进YOLOv3算法[J]. 计算机工程与应用, 2021, 57(20):133-141. |
WANG J J, WEI J, MEI S H, et al. Improved YOLOv3 for small object detection in remote sensing images[J]. Computer Engineering and Applications, 2021, 57(20):133-141. | |
[41] | LI Y, LV C. SS-YOLO: an object detection algorithm based on YOLOv3 and ShuffleNet[C]// Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, Jun 12-14, 2020. Piscataway: IEEE, 2020: 769-772. |
[42] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141. |
[43] | BOCHKOVSKIY A, WANG C Y, LIAO H . M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020. |
[44] | MAHTO P, GARG P, SETH P, et al. Refining YOLOV4 for vehicle detection[J]. International Journal of Advanced Research in Engineering and Technology, 2020, 11(5):409-419. |
[45] | 谢俊章, 彭辉, 唐健峰, 等. 改进YOLOv4的密集遥感目标检测[J]. 计算机工程与应用, 2021, 57(22):247-256. |
XIE J Z, PENG H, TANG J F, et al. Improve YOLOv4 for dense remote sensing target detection[J]. Computer Engineering and Applications, 2021, 57(22):247-256. | |
[46] | JOCHER G. YOLOv5[EB/OL]. [2020-08-10]. https://github.com/ultralytics/yolov5. |
[47] | PAN Z H, CHEN Y. Object detection algorithm based on dense connection[C]// Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, Chengdu, Dec 20-22, 2019. Piscataway: IEEE, 2019: 1558-1562. |
[48] | 李航, 朱明. 基于深度卷积神经网络的小目标检测算法[J]. 计算机工程与科学, 2020, 42(4):649-657. |
LI H, ZHU M. A small object detection algorithm based on deep convolutional neural network[J]. Computer Engineering and Science, 2020, 42(4):649-657. | |
[49] | 齐榕, 贾瑞生, 徐志峰, 等. 基于YOLOv3的轻量级目标检测网络[J]. 计算机应用与软件, 2020, 37(10):208-213. |
QI R, JIA R S, XU Z F, et al. Lightweight object detection network based on YOLOv3[J]. Computer Applications and Software, 2020, 37(10):208-213. | |
[50] | 郑秋梅, 王璐璐, 王风华. 基于改进卷积神经网络的交通场景小目标检测[J]. 计算机工程, 2020, 46(6):26-33. |
ZHENG Q M, WANG L L, WANG F H. Small object detection in traffic scene based on improved convolutional neural network[J]. Computer Engineering, 2020, 46(6):26-33. | |
[51] | 张侣, 周博文, 吴亮红. 基于改进卷积注意力模块与残差结构的SSD网络[J/OL]. 计算机科学 [2021-09-12]. . |
ZHANG L, ZHOU B W, WU L H. SSD network based on improved convolutional attention module and residual structure[J/OL]. Computer Science [2021-09-12]. http://kns.cnki.net/kcms/detail/50.1075.TP.20211012.1354.006. html. | |
[52] | 赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J/OL]. 计算机科学与探索 [2021-10-18]. http://kns.cnki.net/kcms/detail/11.5602.TP20211014.2108.010.html. |
ZHAO P F, XIE L B, PENG L. Deep small object detection algorithm integrating attention mechanism[J/OL]. Journal of Frontiers of Computer Science and Technology [2021-10-18]. http://kns.cnki.net/kcms/detail/11.5602.TP.20211014.2108.010.html. | |
[53] | 奚琦, 张正道, 彭力. 基于改进密集网络与二次回归的小目标检测算法[J]. 计算机工程, 2021, 47(4):241-247. |
XI Q, ZHANG Z D, PENG L. Small object detection algorithm based on improved dense network and quadratic regression[J]. Computer Engineering, 2021, 47(4):241-247. | |
[54] | 徐先峰, 赵万福, 邹浩泉, 等. 基于MobileNet-SSD的安全帽佩戴检测算法[J]. 计算机工程, 2021, 47(10):298-305. |
XU X F, ZHAO W F, ZOU H Q, et al. Safety helmet wearing detection method based on MobileNet-SSD[J]. Computer Engineering, 2021, 47(10):298-305. | |
[55] | LU X, KANG X, NISHIDE S, et al. Object detection based on SSD-ResNet[C]// Proceedings of the 2019 IEEE 6th International Conference on Cloud Computing and Intelligence Systems, Singapore, Dec 19-21, 2019. Piscataway: IEEE, 2019: 89-92. |
[56] | CHENG M, BAI J, LI L, et al. Tiny-RetinaNet: a one-stage detector for realtime object detection[C]// SPIE 11373: Proceedings of the 11th International Conference on Graphics and Image Processing, Hangzhou, 2020. |
[57] | 李文涛, 彭力. 多尺度通道注意力融合网络的小目标检测算法[J]. 计算机科学与探索, 2021, 15(12):2390-2400. |
LI W T, PENG L. Small objects detection algorithm with multi-scale channel attention fusion network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12):2390-2400. | |
[58] |
ZHAI S P, SHANG D R, WANG S H, et al. DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion[J]. IEEE Access, 2020, 8:24344-24357.
DOI URL |
[59] | ZHU X, CHENG D, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6687-6696. |
[60] | 徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(6):13-23. |
XU C J, WANG X F, YANG Y D. Attention-YOLO: YOLO detection algorithm that introduces attention mechanism[J]. Computer Engineering and Applications, 2019, 55(6):13-23. | |
[61] | 张陶宁, 陈恩庆, 肖文福. 一种改进MobileNet_YOLOv3网络的快速目标检测方法[J]. 小型微型计算机系统, 2021, 42(5):1008-1014. |
ZHAG T N, CHEN E Q, XIAO W F. Fast target detection method for improving MobileNet_YOLOv3 network[J]. Journal of Chinese Computer Systems, 2021, 42(5):1008-1014. | |
[62] |
LI Y, LI S, DU H, et al. YOLO-ACN: focusing on small target and occluded object detection[J]. IEEE Access, 2020, 8:227288-227303.
DOI URL |
[63] | 麻森权, 周克. 基于注意力机制和特征融合改进的小目标检测算法[J]. 计算机应用与软件, 2020, 37(5):194-199. |
MA S Q, ZHOU K. An improved small object detection algorithm based on attention mechanism and feature fusion[J]. Computer Applications and Software, 2020, 37(5):194-199. | |
[64] | WANG Q, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 11531-11539. |
[65] | 于敏, 屈丹, 司念文. 改进型RetinaNet的目标检测算法[J/OL]. 计算机工程 [2021-08-27]. https://doi.org/10.19678/j.issn.1000-3428.0062134. |
YU M, QU D, SI N W. Object detection algorithm for improved RetinaNet[J/OL]. Computer Engineering [2021-08-27]. https://doi.org/10.19678/j.issn.1000-3428.0062134. | |
[66] | QIN Z Q, ZHANG P Y, WU F, et al. FcaNet: frequency channel attention networks[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 783-792. |
[67] | 刘建政, 梁鸿, 崔学荣, 等. 融入特征融合与特征增强的SSD目标检测[J/OL]. 计算机工程与应用 [2021-09-16]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210203.1148.022.html. |
LIU J Z, LIANG H, CUI X R, et al. SSD visual target detector based on feature integration and feature enhancement[J/OL]. Computer Engineering and Applications [2021-09-16]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210203.1148.022.html. | |
[68] | 张海涛, 张梦. 引入通道注意力机制的SSD目标检测算法[J]. 计算机工程, 2020, 46(8):264-270. |
ZHANG H T, ZHANG M. SSD target detection algorithm with channel attention mechanism[J]. Computer Engineering, 2020, 46(8):264-270. | |
[69] |
PAN H, CHEN G, JIANG J. Adaptively dense feature pyramid network for object detection[J]. IEEE Access, 2019, 7:81132-81144.
DOI URL |
[70] |
ZHU G, WEI Z, LIN F. An object detection method combining multi-level feature fusion and region channel attention[J]. IEEE Access, 2021, 9:25101-25109.
DOI URL |
[71] | 赵文清, 杨盼盼. 双向特征融合与注意力机制结合的目标检测[J]. 智能系统学报, 2021, 16(6):1098-1105. |
ZHAO W Q, YANG P P. Target detection based on bidirectional feature fusion and attention mechanism[J]. CAAI Transactions on Intelligent Systems, 2021, 16(6):1098-1105. | |
[72] | 鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13):132-140. |
JU M R, LUO J N, WANG Z B, et al. Multi-scale target detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 2020, 40(13):132-140. | |
[73] | 宋忠浩, 谷雨, 陈旭, 等. 基于加权策略的高分辨率遥感图像目标检测[J]. 计算机工程与应用, 2021, 57(13):199-206. |
SONG Z H, GU Y, CHEN X, et al. Target detection in high-resolution remote sensing image based on weighted strategy[J]. Computer Engineering and Applications, 2021, 57(13):199-206. | |
[74] |
SHI W, BAO S, TAN D. FFESSD: an accurate and efficient single-shot detector for target detection[J]. Applied Sciences, 2019, 9(20):4276.
DOI URL |
[75] | WOO S, HWANG S, KWEON I S. StairNet: top-down semantic aggregation for accurate one shot detection[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Piscataway: IEEE, 2018: 1093-1102. |
[76] | 张思宇, 张轶. 基于多尺度特征融合的小目标行人检测[J]. 计算机工程与科学, 2019, 41(9):1627-1634. |
ZHANG S Y, ZHANG Y. Small target pedestrian detection based on multi-scale feature fusion[J]. Computer Engineering and Science, 2019, 41(9):1627-1634. | |
[77] | 王燕妮, 余丽仙. 注意力与多尺度有效融合的SSD目标检测算法[J/OL]. 计算机科学与探索 [2021-09-12]. http://kns.cnki.net/kcms/detail/11.5602.TP.20210722.1315.004.html. |
WANG Y N, YU L X. SSD object detection algorithm with effective fusion of attention and multi-scale[J/OL]. Journal of Frontiers of Computer Science and Technology [2021-09-12]. http://kns.cnki.net/kcms/detail/11.5602.TP.20210722.1315.004.html. | |
[78] | 赵文清, 孔子旭, 周震东, 等. 增强小目标特征的航空遥感目标检测[J]. 中国图象图形学报, 2021, 26(3):644-653. |
ZHAO W Q, KONG Z X, ZHOU Z D, et al. Target detection algorithm of aerial remote sensing based on feature enhancement technology[J]. Journal of Image and Graphics, 26(3):644-653. | |
[79] | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5693-5703. |
[80] | SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation[J]. Advances in Neural Information Processing Systems, 2015, 28:802-810. |
[81] | 鲁博, 瞿绍军. 融合BiFPN和改进YOLOv3-Tiny网络的航拍图像车辆检测方法[J]. 小型微型计算机系统, 2021, 42(8):1694-1698. |
LU B, QU S J. Vehicle detection method in aerial images based on BiFPN and improved YOLOv3-Tiny network[J]. Journal of Chinese Computer Systems, 2021, 42(8):1694-1698. | |
[82] | 潘昕晖, 邵清, 卢军国. 基于CBD-YOLOv3的小目标检测算法[J/OL]. 小型微型计算机系统 [2021-09-05]. http://kns.cnki.net/kcms/detail/21.1106.TP.20210818.1055.032.html. |
PAN X H, SHAO Q, LU J G. Small object detection algorithm based on CBD-YOLOv3[J/OL]. Journal of Chinese Computer Systems [2021-09-05]. http://kns.cnki.net/kcms/detail/21.1106.TP.20210818.1055.032.html. | |
[83] | REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 658-666. |
[84] | YANG Y M, LIAO Y R, CHENG L F, et al. Remote sensing image aircraft target detection based on GIoU-YOLOv3[C]// Proceedings of the 2021 6th International Conference on Intelligent Computing and Signal Processing, Xi’an, Apr 9-11, 2021. Piscataway: IEEE, 2021: 474-478. |
[85] | 邹承明, 薛榕刚. 融合GIoU和Focal loss的YOLOv3目标检测算法[J]. 计算机工程与应用, 2020, 56(24):214-222. |
ZOU C M, XUE R G. Improved YOLOv3 object detection algorithm: combining GIoU and Focal loss[J]. Computer Engineering and Applications, 2020, 56(24):214-222. | |
[86] | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12993-13000. |
[87] | LIANG T J, BAO H. A optimized YOLO method for object detection[C]// Proceedings of the 2020 16th International Conference on Computational Intelligence and Security, Nanning, Nov 27-30, 2020. Piscataway: IEEE, 2020: 30-34. |
[88] | ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. arXiv:2005.03572, 2020. |
[89] | 单美静, 秦龙飞, 张会兵. L-YOLO: 适用于车载边缘计算的实时交通标识检测模型[J]. 计算机科学, 2021, 48(1):89-95. |
SHAN M J, QIN L F, ZHANG H B. L-YOLO: real time traffic sign detection model for vehicle edge computing[J]. Computer Science, 2021, 48(1):89-95. | |
[90] | 张炳力, 秦浩然, 江尚, 等. 基于RetinaNet及优化损失函数的夜间车辆检测方法[J]. 汽车工程, 2021, 43(8):1195-1202. |
ZHANG B L, QIN H R, JIANG S, et al. A method of vehicle detection at night based on RetinaNet and optimized loss functions[J]. Automotive Engineering, 2021, 43(8):1195-1202. | |
[91] | HU Y Y, WU X J, ZHENG G D, et al. Object detection of UAV for Anti-UAV based on improved YOLO v3[C]// Proceedings of the 2019 Chinese Control Conference, Guangzhou, Jul 27-30 2019. Piscataway: IEEE, 2019: 8386-8390. |
[92] | 黄凤琪, 陈明, 冯国富. 基于可变形卷积改进的YOLO目标检测算法[J]. 计算机工程, 2021, 47(10):269-275. |
HUANG F Q, CHEN M, FENG G F. Improved YOLO object detection algorithm based on deformable convolution[J]. Computer Engineering, 2021, 47(10):269-275. | |
[93] | WANG Z H, LI L H, LI L, et al. Object detection algorithm based on improved YOLOv3-Tiny network in traffic scenes[C]// Proceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence, Hangzhou, Dec 18-20, 2020. Piscataway: IEEE, 2020: 514-518. |
[94] | 黄同愿, 杨雪姣, 向国徽, 等. 基于单目视觉的小目标行人检测与测距研究[J]. 计算机科学, 2020, 47(11):205-211. |
HUANG T Y, YANG X J, XIANG G H, et al. Study on small target pedestrian detection and ranging based on monocular vision[J]. Computer Science, 2020, 47(11):205-211. | |
[95] |
CHENG X B, QIU G H, JIANG Y, et al. An improved small object detection method based on YOLO V3[J]. Pattern Analysis and Applications, 2021, 24(3):1347-1355.
DOI URL |
[96] | ZHAO Q J, SHENG T, WANG Y T, et al. M2Det: a single-shot object detector based on multi-level feature pyramid network[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park, AAAI, 2019: 9259-9266. |
[97] | 王鹏, 陆振宇, 詹天明, 等. 基于PDSSD改进型神经网络的小目标检测算法[J]. 计算机应用与软件, 2021, 38(1):149-156. |
WANG P, LU Z Y, ZHAN T M, et al. Small object detection algorithm based on PDSSD improved neural network[J]. Computer Applications and Software, 2021, 38(1):149-156. | |
[98] | 张新良, 谢恒, 赵运基, 等. 融合多维空洞卷积算子和多层次特征的深度网络检测算法[J]. 模式识别与人工智能, 2020, 33(10):898-905. |
ZHANG X L, XIE H, ZHAO Y J, et al. Deep networks detection algorithm fusing multiple dilated convolution operator and multi-level characteristics[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10):898-905. | |
[99] | 陈灏然, 彭力. 感受野下的小目标检测算法[J]. 计算机科学与探索, 2021, 15(2):346-353. |
CHEN H R, PENG L. Detection algorithm of small target in receptive field block[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2):346-353. | |
[100] | 宋云博, 陈冬艳, 郝赟, 等. 基于级联卷积神经网络的高效目标检测方法[J]. 计算机工程与应用, 2021, 57(5):139-145. |
SONG Y B, CHEN D Y, HAO Y, et al. Efficient object detection method based on cascaded convolutional neural network[J]. Computer Engineering and Applications, 2021, 57(5):139-145. | |
[101] | LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]// Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 765-781. |
[102] | DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6569-6578. |
[103] | TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9626-9635. |
[104] | BEHRENDT K, NOVAK L, BOTROS R. A deep learning approach to traffic lights: detection, tracking, and classification[C]// Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore, May 29- Jun 3, 2017. Piscataway: IEEE, 2017: 1370-1377. |
[105] | WANG J W, YANG W, GUO H W, et al. Tiny object detection in aerial images[C]// Proceedings of the 2020 25th International Conference on Pattern Recognition, Milan, Jan 10-15, 2021. Piscataway: IEEE, 2021: 3791-3798. |
[106] | ZAMIR S W, ARORA A, GUPTA A, et al. iSAID: a large-scale dataset for instance segmentation in aerial images[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 28-37. |
[107] | BONDI E, JAIN R, AGGRAWAL P, et al. BIRDSAI: a data-set for detection and tracking in aerial thermal infrared videos[C]// Proceedings of the 2020 IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 1747-1756. |
[108] |
ZHANG S F, XIE Y L, WAN J, et al. WiderPerson: a diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2020, 22(2):380-393.
DOI URL |
[109] | NEUMANN L, KARG M, ZHANG S, et al. NightOwls: a pedestrians at night dataset[C]// Proceedings of the 14th Asian Conference on Computer Vision, Perth, Dec 2-6, 2018. Cham: Springer, 2018: 691-705. |
[110] | TUGGENER L, ELEZI I, SCHMIDHUBER J, et al. DeepScores—a dataset for segmentation, detection and classification of tiny objects[C]// Proceedings of the 2018 24th International Conference on Pattern Recognition, Beijing, Aug 20-24, 2018. Piscataway: IEEE, 2018: 3704-3709. |
[1] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[2] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[3] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[4] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[5] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[6] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[7] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[8] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[9] | ZHONG Mengyuan, JIANG Lin. Review of Super-Resolution Image Reconstruction Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990. |
[10] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[11] | XU Jia, WEI Tingting, YU Ge, HUANG Xinyue, LYU Pin. Review of Question Difficulty Evaluation Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 734-759. |
[12] | ZHAO Pengfei, XIE Linbo, PENG Li. Deep Small Object Detection Algorithm Integrating Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937. |
[13] | ZHU Weijie, CHEN Ying. Micro-expression Recognition Convolutional Network for Dual-stream Temporal-Domain Information Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 950-958. |
[14] | JIANG Yi, XU Jiajie, LIU Xu, ZHU Junwu. Research on Edge-Guided Image Repair Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 669-682. |
[15] | ZHANG Quangui, HU Jiayan, WANG Li. One Class Collaborative Filtering Recommendation Algorithm Coupled with User Common Characteristics [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 637-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/