Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (12): 2795-2807.DOI: 10.3778/j.issn.1673-9418.2209007
• Frontiers·Surveys • Previous Articles Next Articles
WEN Xuyun, NIE Ziyu, CAO Qumei, ZHANG Daoqiang
Online:
2023-12-01
Published:
2023-12-01
温旭云,聂梓宇,曹曲美,张道强
WEN Xuyun, NIE Ziyu, CAO Qumei, ZHANG Daoqiang. Review of Community Detection in Complex Brain Networks[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2795-2807.
温旭云, 聂梓宇, 曹曲美, 张道强. 复杂脑网络社区检测算法综述[J]. 计算机科学与探索, 2023, 17(12): 2795-2807.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2209007
[1] BULLMORE E, SPORNS O. Complex brain networks: graph theoretical analysis of structural and functional systems[J]. Nature Reviews Neuroscience, 2009, 10(3): 186-198. [2] BULLMORE E T, BASSETT D S. Brain graphs: graphical models of the human brain connectome[J]. Annual Review of Clinical Psychology, 2011, 7: 113-140. [3] RUBINOV M, SPORNS O. Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage, 2010, 52(3): 1059-1069. [4] SPORNS O, BETZEL R F. Modular brain networks[J]. Annual Review of Psychology, 2016, 67: 613-640. [5] YEO B T, KRIENEN F M, SEPULCRE J, et al. The organiza-tion of the human cerebral cortex estimated by intrinsic functional connectivity[J]. Journal of Neurophysiology, 2011, 106(3): 1125-1165. [6] COLE M W, REYNOLDS J R, POWER J D, et al. Multi-task connectivity reveals flexible hubs for adaptive task control[J]. Nature Neuroscience, 2013, 16(9): 1348-1355. [7] DAI Z, LIN Q, LI T, et al. Disrupted structural and functional brain networks in Alzheimer’s disease[J]. Neurobiology of Aging, 2019, 75: 71-82. [8] GARCIA J O, ASHOURVAN A, MULDOON S, et al. Applica-tions of community detection techniques to brain graphs: algorithmic considerations and implications for neural function[J]. Proceedings of the IEEE, 2018, 106(5): 846-867. [9] VANGIMALLA R R, SREEVALSAN-NAIR J. Comparing community detection methods in brain functional connectivity networks[C]//Proceedings of the 2019 International Con-ference on Computational Intelligence, Cyber Security, and Computational Models, Coimbatore, Dec 19-21, 2019. Singapore: Springer, 2020: 1213. [10] PARK H, FRISTON K. Structural and functional brain networks: from connections to cognition[J]. Science, 2013, 342(6158): 1238411. [11] POWER J D, COHEN A L, NELSON S M, et al. Functional network organization of the human brain[J]. Neuron, 2011, 72(4): 665-678. [12] HUTCHISON R M, WOMELSDORF T, ALLEN E A, et al. Dynamic functional connectivity: promise, issues, and inter-pretations[J]. Neuroimage, 2013, 80: 360-378. [13] LYNN C W, BASSETT D S. The physics of brain network structure, function and control[J]. Nature Reviews Physics, 2019, 1(5): 318-332. [14] BETZEL R F, MI?I? B, HE Y, et al. Functional brain modules reconfigure at multiple scales across the human lifespan[J]. arXiv:1510.08045, 2015. [15] MEUNIER D, ACHARD S, MORCOM A, et al. Age-related changes in modular organization of human brain functional networks[J]. Neuroimage, 2009, 44(3): 715-723. [16] BLONDEL VINCENT D, JEAN-LOUP G, RENAUD L, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 10: P10008. [17] NEWMAN M E. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences, 2006, 103(23): 8577-8582. [18] CLAUSET A, NEWMAN M E, MOORE C. Finding comm-unity structure in very large networks[J]. Physical Review E, 2004, 70(6): 66111. [19] YEH J Y, FU J C. Double simulated annealing for functional MRI analysis[J]. Journal of the Chinese Institute of Industrial Engineers, 2005, 22(6): 497-508. [20] DUCH J, ARENAS A. Community detection in complex networks using extremal optimization[J]. Physical Review E, 2005, 72(2): 27104. [21] BERGSTROM C T, ROSVALL M. Maps of random walks on complex networks reveal community structure[J]. Pro-ceedings of the National Academy of Sciences, 2008, 105(4): 1118-1123. [22] JIANG Y, JIA C, YU J. An efficient community detection algorithm using greedy surprise maximization[J]. Journal of Physics A: Mathematical and Theoretical, 2014, 47(16): 165101. [23] BRYANT C, ZHU H, AHN M, et al. LCN: a random graph mixture model for community detection in functional brain networks[J]. Statistics and Its Interface, 2017, 10(3): 369. [24] ZHANG H, STANLEY N, MUCHA P J, et al. Multi-layer large-scale functional connectome reveals infant brain developmental patterns[C]//LNCS 11072: Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Sep 16-20, 2018. Cham: Springer, 2018: 136-144. [25] GUPTA S, RAJAPAKSE J C. Iterative consensus spectral clustering improves detection of subject and group level brain functional modules[J]. Scientific Reports, 2020, 10(1): 7590. [26] WEN X, ZHANG H, LI G, et al. First-year development of modules and hubs in infant brain functional networks[J]. NeuroImage, 2019, 185: 222-235. [27] NAJAFI M, MCMENAMIN B W, SIMON J Z, et al. Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions[J]. Neuroimage, 2016, 135: 92-106. [28] GU Y, LI L, ZHANG Y, et al. The overlapping modular organization of human brain functional networks across the adult lifespan[J]. NeuroImage, 2022, 253: 119125. [29] LI X, HU Z, WANG H. Overlapping community structure detection of brain functional network using non-negative matrix factorization[C]//LNCS 9949: Proceedings of the 23rd International Conference on Neural Information Pro-cessing, Kyoto, Oct 16-21, 2016. Cham: Springer, 2016: 140-147. [30] LI X, HU Z, WANG H. Combining non-negative matrix factorization and sparse coding for functional brain overlapping community detection[J]. Cognitive Computation, 2018, 10: 991-1005. [31] LI X, GAN J Q, WANG H. Collective sparse symmetric non-negative matrix factorization for identifying overlapping communities in resting-state brain functional networks[J]. NeuroImage, 2018, 166: 259-275. [32] MIRZAEI S, SOLTANIAN-ZADEH H. Overlapping brain community detection using Bayesian tensor decomposition[J]. Journal of Neuroscience Methods, 2019, 318: 47-55. [33] LIN Y, MA J, GU Y, et al. Intrinsic overlapping modular organization of human brain functional networks revealed by a multiobjective evolutionary algorithm[J]. NeuroImage, 2018, 181: 430-445. [34] WEN X, CHEN W, LIN Y, et al. A maximal clique based multiobjective evolutionary algorithm for overlapping com-munity detection[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(3): 363-377. [35] YOLDEMIR B, NG B, ABUGHARBIEH R. Stable over-lapping replicator dynamics for brain community detection[J]. IEEE Transactions on Medical Imaging, 2015, 35(2): 529-538. [36] HAN H, LI X, GAN J Q, et al. Biomarkers derived from alterations in overlapping community structure of resting-state brain functional networks for detecting Alzheimer’s disease[J]. Neuroscience, 2022, 484: 38-52. [37] HAN H, GE S, WANG H. Prediction of brain age based on the community structure of functional networks[J]. Biomedical Signal Processing and Control, 2023, 79: 104151. [38] MEUNIER D, LAMBIOTTE R, BULLMORE E T. Modular and hierarchically modular organization of brain networks[J]. Frontiers in Neuroscience, 2010, 4: 200. [39] MEUNIER D, LAMBIOTTE R, FORNITO A, et al. Hier-archical modularity in human brain functional networks[J]. Frontiers in Neuroinformatics, 2009, 3: 571. [40] ASHOURVAN A, TELESFORD Q K, VERSTYNEN T, et al. Multi-scale detection of hierarchical community architecture in structural and functional brain networks[J]. PLoS One, 2019, 14(5): e215520. [41] VANGIMALLA R R, SREEVALSAN-NAIR J. A multiscale consensus method using factor analysis to extract modular regions in the functional brain network[C]//Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Montreal, Jul 20-24, 2020. Piscataway: IEEE, 2020: 2824-2828. [42] SANCHEZ-RODRIGUEZ L M, ITURRIA-MEDINA Y, MOUCHES P, et al. Detecting brain network communities: considering the role of information flow and its different temporal scales[J]. NeuroImage, 2021, 225: 117431. [43] FASKOWITZ J, ESFAHLANI F Z, JO Y, et al. Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture[J]. Nature Neuroscience, 2020, 23(12): 1644-1654. [44] FAN Y, WANG R, YI C, et al. Hierarchical overlapping modular structure in the human cerebral cortex improves individual identification[J]. iScience, 2023, 26(5): 106575. [45] BRAUN U, SCH?FER A, BASSETT D S, et al. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function[J]. Proceedings of the National Academy of Sciences, 2016, 113(44): 12568-12573. [46] MUCHA P J, RICHARDSON T, MACON K, et al. Com-munity structure in time-dependent, multiscale, and multiplex networks[J]. Science, 2010, 328(5980): 876-878. [47] MUELLER J M, PRITSCHET L, SANTANDER T, et al. Dynamic community detection reveals transient reorganization of functional brain networks across a female menstrual cycle[J]. Network Neuroscience, 2021, 5(1): 125-144. [48] RIZKALLAH J, BENQUET P, KABBARA A, et al. Dynamic reshaping of functional brain networks during visual object recognition[J]. Journal of Neural Engineering, 2018, 15(5): 56022. [49] TING C, SAMDIN S B, TANG M, et al. Detecting dynamic community structure in functional brain networks across individuals: a multilayer approach[J]. IEEE Transactions on Medical Imaging, 2020, 40(2): 468-480. [50] AL-SHAROA E, AL-KHASSAWENEH M, AVIYENTE S. Tensor based temporal and multilayer community detection for studying brain dynamics during resting state fMRI[J]. IEEE Transactions on Biomedical Engineering, 2018, 66(3): 695-709. [51] WEN X, ZHANG D. A multi-layer random walk method for local dynamic community detection in brain functional network[C]//Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine, Houston, Dec 9-12, 2021. Piscataway: IEEE, 2021: 1098-1103. [52] WEN X, YANG M, HSU L, et al. Test-retest reliability of modular-relevant analysis in brain functional network[J]. Frontiers in Neuroscience, 2022, 16: 1000863. [53] DIMITRIADIS S I, MESSARITAKI E, K JONES D. The impact of graph construction scheme and community detection algorithm on the repeatability of community and hub identification in structural brain networks[J]. Human Brain Mapping, 2021, 42(13): 4261-4280. [54] PUXEDDU M G, FASKOWITZ J, SPORNS O, et al. Multi-modal and multi-subject modular organization of human brain networks[J]. NeuroImage, 2022, 264: 119673. |
[1] | LI Hao, YANG Haixiao, ZHANG Lan, HUANG Xin, WANG Haining, KANG Yan. Improved Discrete Mayfly Algorithm for Multi-objective Dynamic Network Commu-nity Detection [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 942-952. |
[2] | WANG Benyu, GU Yijun, PENG Shufan. Semi-supervised Community Detection Algorithm Based on Particle Competition [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 608-619. |
[3] | WANG Zhongmin, ZHAO Yupeng, ZHENG Ronglin, HE Yan, ZHANG Jiawen, LIU Yang. Survey of Research on EEG Signal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 760-774. |
[4] | CHEN Jie, ZHANG Erming, WANG Qianqian, ZHAO Shu, ZHANG Yanping. Method of K-order Graph Convolution Attribute Network Community Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2788-2796. |
[5] | DUAN Xiangyu, YUAN Guan, MENG Fanrong. Dynamic Community Detection: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 612-630. |
[6] | FENG Yong, ZHANG Bingru, XU Hongyan, WANG Rongbing, ZHANG Yonggang. Community Detection Algorithms Combining Improved Differential Evolution and Modularity Density [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 1070-1080. |
[7] | ZHANG Chunxiang, WANG Jun, ZHANG Jiaxu, DENG Zhaohong, PAN Xiang, WANG Shitong. Novel TSK Modeling Method with Joint Group Sparse Learning for Autism Aided Diagnosis [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2083-2093. |
[8] | CHEN Kejia, CHEN Liming, WU Tong. Survey on Community Detection in Multi-layer Networks [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1801-1812. |
[9] | JIANG Miaomiao, SUN Gengxin, BIN Sheng. Community Detection Algorithm in Multiple Relationships Online Social Network [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1134-1144. |
[10] | FENG Lizhou, QIN Yue, YANG Guijun. Community Detection Algorithm with Difference of Node-Local Fiedler Vector Centrality [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(12): 2029-2042. |
[11] | LI Chunying, TANG Zhikang, TANG Yong, ZHAO Jiandong, HUANG Yonghang. Community Detection Algorithm with Local-First Approach in Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(8): 1263-1277. |
[12] | HUANG Feihu, CHEN Songcan. Joint Learning of Dynamic Semi-Parameter Probability Graphical Models [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(6): 940-949. |
[13] | WANG Hongjie, TENG Fei, LI Tianrui. Incremental Learning Algorithm of Community Detection under Guidance of Modularity [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(4): 556-564. |
[14] | SHEN Guilan, JIA Caiyan, YU Jian, YANG Xiaoping. Semantic Community Detection Algorithm for Large Scale Information Network [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(4): 565-576. |
[15] | ZHOU Yang, CHEN Xiaoyun, CHENG Jianjun, LIU Wei, MIAO Haifei. Bisection Spectral Community-Detection Methods Using Optimal Eigenvectors [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(12): 1897-1906. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/