Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (7): 1549-1564.DOI: 10.3778/j.issn.1673-9418.2209076
• Frontiers·Surveys • Previous Articles Next Articles
LIU Weiguang, LIU Dong, WANG Lu
Online:
2023-07-01
Published:
2023-07-01
刘卫光,刘东,王璐
LIU Weiguang, LIU Dong, WANG Lu. Survey of Deformable Convolutional Networks[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1549-1564.
刘卫光, 刘东, 王璐. 可变形卷积网络研究综述[J]. 计算机科学与探索, 2023, 17(7): 1549-1564.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2209076
[1] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision,Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 764-773. [2] AZULAY A, WEISS Y. Why do deep convolutional net-works generalize so poorly to small image transformations[J]. Machine Learning Research, 2019, 20: 1-25. [3] COHEN T S, WELLING M. Group equivariant convolu-tional networks[J]. arXiv:1602.07576, 2016. [4] FOLLMANN P, B?TTGER T. A rotationally-invariant con-volution module by feature map back-rotation[C]//Procee-dings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Washington: IEEE Computer Society, 2018: 784-792. [5] JEON Y, KIM J. Active convolution: learning the shape of convolution for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Reco-gnition, Honolulu, Jul 21-26, 2017. Washington: IEEE Com-puter Society, 2017: 1846-1854. [6] 魏驰宇, 刘蓉, 刘明, 等. 改进FCOS的复杂场景口罩佩戴检测算法[J]. 计算机工程与应用, 2023, 59(11): 188-194. WEI C Y, LIU R, LIU M, et al. Improved algorithm of FCOS for complex scene mask wear detection[J]. Computer Engi-neering and Applications, 2023, 59(11): 188-194 . [7] ZHU X Z, HU H, LIN S, et al. Deformable ConvNets v2: more deformable, better results[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recogni-tion, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 9308-9316. [8] ZHU J, FANG L, GHAMISI P. Deformable convolutional neural networks for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1254-1258. [9] 唐婷, 潘新. 一种基于可变形卷积的高光谱图像分类算法[J]. 光电子·激光, 2022, 33(5): 488-494. TANG T, PAN X. A hyperspectral image classification algo-rithm based on deformable convolution[J]. Journal of Opto-electronics·Laser, 2022, 33(5): 488-494. [10] DONG X, TAN L, ZHOU L, et al. An action recognition method based on deformable convolution network[J]. Journal of Physics. Conference Series, 2020, 1487(1): 12033. [11] 王雪娇, 智敏. 基于可变形卷积神经网络的人体动作识别[J]. 计算机工程与科学, 2021, 43(1): 105-111. WANG X J, ZHI M. Human motion recognition based on deformable convolutional neural network[J]. Computer Engi-neering & Science, 2021, 43(1): 105-111. [12] WANG H, ZHANG Y, LIU C, et al. sEMG based hand ges-ture recognition with deformable convolutional network[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(6): 1729-1738. [13] MA P, MA J, WANG X, et al. Deformable convolutional networks for multi-view 3D shape classification[J]. Electro-nics Letters, 2018, 54(24): 1373-1375. [14] YAO X, SUN K, BU X, et al. Classification of white blood cells using weighted optimized deformable convolutional neural networks[J]. Artificial Cells, Nanomedicine, and Bio-technology, 2021, 49(1): 147-155. [15] 安鑫, 孙昊, 卓力, 等. 基于可变形卷积和自适应二维位置编码的鲁棒车牌识别方法[J]. 测控技术, 2023, 42(3): 11-18. AN X, SUN H, ZHUO L, et al. Robust license plate recog-nition based on deformable convolution and adaptive 2D positional encoding[J]. Measurement & Control Technology, 2023, 42(3): 11-18. [16] 王鉴, 张荣福. 基于可变形卷积的单帧图像眼球定位追踪[J]. 光学仪器, 2021, 43(6): 26-31. WANG J, ZHANG R F. Single-frame image eyeball trac-king based on deformable convolution[J]. Optical Instruments, 2021, 43(6): 26-31. [17] 黄凤琪, 陈明, 冯国富. 基于可变形卷积的改进YOLO目标检测算法[J]. 计算机工程, 2021, 47(10): 269-275. HUANG F Q, CHEN M, FENG G F. Improved YOLO object detection algorithm based on deformable convolution[J]. Com-puter Engineering, 2021, 47(10): 269-275. [18] 赵轩, 周凡, 余汉成. 基于改进特征提取及融合模块的YOLOv3模型[J]. 电子科技, 2022, 35(7): 40-45. ZHAO X, ZHOU F, YU H C. Improved YOLOv3 model based on new feature extraction and fusion module[J]. Elec-tronic Science and Technology, 2022, 35(7): 40-45. [19] LI D Y, WANG G F, ZHANG Y, et al. Coal gangue detec-tion and recognition algorithm based on deformable convo-lution YOLOv3[J]. IET Image Processing, 2022, 16(1): 134-144. [20] 包俊, 刘宏哲. 融合可变形卷积网络的鱼眼图像目标检测[J]. 计算机工程, 2021, 47(4): 248-255. BAO J, LIU H Z. Object detection in fisheye images com-bining deformable convolutional networks[J]. Computer Engi-neering, 2021, 47(4): 248-255. [21] WEI X, WEI Y, LU X. RMDC: rotation-mask deformable convolution for object detection in top-view fisheye cameras[J]. Neurocomputing, 2022, 504: 99-108. [22] GUAN S Y, ZHANG W Y, JIANG Y F. A surface defect detection method of the magnesium alloy sheet based on deformable convolution neural network[J]. Metalurgija, 2020, 59(3): 325-328. [23] LIU Z, YANG B, DUAN G, et al. Visual defect inspection of metal part surface via deformable convolution and con-catenate feature pyramid neural networks[J]. IEEE Transac-tions on Instrumentation and Measurement, 2020, 69(12): 9681-9694. [24] 李海丰, 景攀, 韩红阳. 基于可变形卷积与特征融合的机场道面裂缝检测算法[J]. 南京航空航天大学学报, 2021, 53(6): 981-988. LI H F, JING P, HAN H Y. Airport pavement crack detec-tion algorithm based on deformable convolution and fea-ture fusion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(6): 981-988. [25] 孙志超, 王博, 张晓玲. 基于可变形残差卷积与伸缩式特征金字塔算法的PCB缺陷检测[J/OL]. 电讯技术(2022-04-27) [2023-04-11]. http://kns.cnki.net/kcms/detail/51.1267.tn.20220427.1608.012.html. SUN Z C, WANG B, ZHANG X L. PCB defect detection based on deformable residual convolution and scalable fea-ture pyramid algorithm[J/OL]. Telecommunication Enginee-ring (2022-04-27) [2023-04-11]. http://kns.cnki.net/kcms/detail/51.1267.tn.20220427.1608.012.html. [26] 朱红艳, 李泽平, 赵勇, 等. 基于多尺度融合和可变形卷积PCB缺陷检测算法[J]. 计算机工程与设计, 2022, 43(8): 2188-2196. ZHU H Y, LI Z P, ZHAO Y, et al. PCB defect detection algorithm based on multi-scale fusion and deformable con-volution[J]. Computer Engineering and Design, 2022, 43(8): 2188-2196. [27] 赵丽娟, 柳长安, 张正, 等. 输电线路中销钉缺陷的自适应检测技术研究[J]. 华中科技大学学报(自然科学版), 2023, 51(2): 109-115. ZHAO L J, LIU C A, ZHANG Z, et al. Research on adaptive detection technology for pin defects in transmission lines[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2023, 51(2): 109-115. [28] HAQUE M F, KANG D. Object localization and detection using SALNet with deformable convolutional network[J]. The Journal of Korean Institute of Information Technology, 2020, 18(1): 27-34. [29] LIU Z, SHEN C, FAN X, et al. Scale-aware limited defor-mable convolutional neural networks for traffic sign detec-tion and classification[J]. IET Intelligent Transport Systems, 2020, 14(12): 1712-1722. [30] LI C, ZHANG D, TIAN Z, et al. Few-shot learning with deformable convolution for multiscale lesion detection in mammography[J]. Medical Physics, 2020, 47(7): 2970-2985. [31] DENG L, YANG M, LI H, et al. Restricted deformable con-volution-based road scene semantic segmentation using sur-round view cameras[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(10): 4350-4362. [32] PLAYOUT C, AHMAD O, LECUE F, et al. Adaptable defor-mable convolutions for semantic segmentation of fisheye ima-ges in autonomous driving systems[J]. arXiv:2102.10191, 2021. [33] JIN Q, MENG Z, PHAM T D, et al. DUNet: a deformable network for retinal vessel segmentation[J]. Knowledge-Based Systems, 2019, 178: 149-162. [34] GURITA A, MOCANU I G. Image segmentation using encoder-decoder with deformable convolutions[J]. Sensors, 2021, 21(5): 1570. [35] CHEN H, DING L, YAO F, et al. Panoptic segmentation of UAV images with deformable convolution network and mask scoring[C]//Proceedings of the 12th International Conference on Graphics and Image Processing, Xi??an, Nov 13-15, 2020. San Francisco: SPIE, 2021: 312-321. [36] 张彬彬, 帕孜来·马合木提. 可变形有效感受野的人体图像语义分割算法[J]. 光电子·激光, 2021, 32(9): 953-961. ZHANG B B, PAZILAT M. Body image semantic segmen-tation algorithm based on deformable effective receptive field[J]. Journal of Optoelectronics·Laser, 2021, 32(9): 953-961. [37] 盛克峰, 李文星. 基于可变形卷积和语义嵌入式注意力机制的眼球超声图像分割方法[J]. 计算机系统应用, 2022, 31(2): 342-349. SHENG K F, LI W X. Eyeball ultrasound image segmen-tation based on deformable convolution and semantic embed-ded attention mechanism[J]. Computer Systems & Applica-tions, 2022, 31(2): 342-349. [38] ZHANG Y, TANG Y, FANG B, et al. Multi-object tracking using deformable convolution networks with tracklets upda-ting[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2019, 17(6): 1950042. [39] CAO W, CHEN X. Deformable convolutional networks trac-ker[J]. Destech Transactions on Computer Science and Engi-neering, 2019, 28(3): 231-235. [40] LIU F, LIU D, TIAN J, et al. Cascaded one-shot deformable convolutional neural networks: developing a deep learning model for respiratory motion estimation in ultrasound sequ-ences[J]. Medical Image Analysis, 2020, 65: 101793. [41] JIE L, LEI H, ZHIQIANG W, et al. Multi-task learning with deformable convolution[J]. Journal of Visual Communication and Image Representation, 2021, 77: 103-109. [42] CHENG K, LUBAMBA E K, LIU Q. Action prediction based on partial video observation via context and temporal sequential network with deformable convolution[J]. IEEE Access, 2020, 8: 133527-133540. [43] 翟强, 王陆洋,殷保群, 等. 基于尺度自适应卷积神经网络的人群计数算法[J]. 计算机工程, 2020, 46(2): 250-254. ZHAI Q, WANG L Y, YIN B Q, et al. Crowd counting algorithm based on scale adaptive convolutional neural net-work[J]. Computer Engineering, 2020, 46(2): 250-254. [44] BERROUK S, EL FAZZIKI A, SADGAL M. Hybrid defor-mable convolutional with recurrent neural network for optimal traffic congestion prediction: a fuzzy logic congestion index system[J]. International Journal of Advanced Computer Scie-nce and Applications, 2022, 13(5): 0130575. [45] NIELSEN A H, IOSIFIDIS A, KARSTOFT H. Forecasting large-scale circulation regimes using deformable convolu-tional neural networks and global spatiotemporal climate data[J]. Scientific Reports, 2022, 12(1): 1-12. [46] PENG J, BAO C, HU C, et al. Automated mammographic mass detection using deformable convolution and multiscale features[J]. Medical & Biological Engineering & Compu-ting, 2020, 58(7): 1405-1417. [47] 王梦南, 赵涓涓, 肖宁, 等. 基于可变形卷积神经网络的肺结节假阳性识别[J]. 计算机工程与设计, 2022, 43(6): 1732-1739. WANG M N, ZHAO J J, XIAO N, et al. False positive identification of pulmonary nodules based on deformable convolutional neural network[J]. Computer Engineering and Design, 2022, 43(6): 1732-1739. [48] YING X, WANG L, WANG Y, et al. Deformable 3d con-volution for video super-resolution[J]. IEEE Signal Proces-sing Letters, 2020, 27: 1500-1504. [49] WANG Y, YANG J, WANG L, et al. Light field image super-resolution using deformable convolution[J]. IEEE Transac-tions on Image Processing, 2020, 30: 1057-1071. [50] KIM J, JI S, BAEK S, et al. Depth map super-resolution using guided deformable convolution[J]. IEEE Access, 2021, 9: 66626-66635. [51] 蔡非凡, 万旺根. 基于可变形非局部三维卷积网络的视频超分辨率重建算法[J]. 工业控制计算机, 2022, 35(3): 54-56. CAI F F, WAN W G. Video super resolution with deformable non-local 3D convolutional network[J]. Industrial Control Computer, 2022, 35(3): 54-56. [52] 王文庆, 庞颖, 刘洋, 等. 基于可变形卷积的图像边缘智能提取方法[J]. 西安邮电大学学报, 2021, 26(1): 84-89. WANG W Q, PANG Y, LIU Y, et al. Image edge intelligent extraction method based on deformable convolution[J]. Journal of Xi??an University of Posts and Telecommunica-tions, 2021, 26(1): 84-89. [53] YANG Z, LIU S, HU H, et al. RepPoints: point set repre-sentation for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9656-9665. [54] CHEN F, WU F, XU J, et al. Adaptive deformable convo-lutional network[J]. Neurocomputing, 2021, 453: 853-864. [55] DENG L, GONG Y, LU X, et al. Focus-enhanced scene text recognition with deformable convolutions[C]//Proceedings of the 5th International Conference on Computer and Com-munications, Chengdu, Dec 6-9, 2019. Piscataway: IEEE, 2019: 1685-1689. [56] LAI S C, TAN H K, LAU P Y. 3D deformable convolution for action classification in videos[C]//Proceedings of the International Workshop on Advanced Imaging Technology 2021, Kagoshima, Jan 5-6, 2021. San Francisco: SPIE, 2021: 149-154. [57] XI W, SUN L, SUN J. Upgrade your network inplace with deformable convolution[C]//Proceedings of the 19th Inter-national Symposium on Distributed Computing and Applic-ations for Business Engineering and Science, Xuzhou, Oct 16-19, 2020. Piscataway: IEEE, 2020: 239-242. [58] CHETLUR S, WOOLLEY C, VANDERMERSCH P, et al. CUDNN: efficient primitives for deep learning[J]. arXiv:1410.0759, 2014. [59] SUN Z, OZAY M, OKATANI T. Design of kernels in con-volutional neural networks for image classification[C]//LNCS 9911: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Sprin-ger, 2016: 51-66. [60] GAO H, ZHU X, LIN S, et al. Deformable kernels: adap-ting effective receptive fields for object deformation[J]. arXiv:1910.02940, 2019. [61] DING X, GUO Y, DING G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric con-volution blocks[C]//Proceedings of the 2019 IEEE/CVF Inter-national Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1911-1920. [62] HE K, LI C, YANG Y, et al. Integrating large circular kernels into CNNs through neural architecture search[J]. arXiv:2107.02451, 2021. |
[1] | WANG Haiyong, PAN Haitao, LIU Guinan. Face Recognition Method Based on Attention Mechanism and Curriculum Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1893-1903. |
[2] | ZHANG Rulin, WANG Hailong, LIU Lin, PEI Dongmei. Survey of Research on Automatic Music Annotation and Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1225-1248. |
[3] | YANG Yanyan, LI Leixiao, LIN Hao. Review of Research on Fatigue Driving Detection Based on Driver Facial Features [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1249-1267. |
[4] | JIANG Lingyun, YANG Jinlong. Detection Optimized Labeled Multi-Bernoulli Algorithm for Visual Multi-target Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1343-1358. |
[5] | LYU Jia, XU Pengcheng. Image Super-resolution Reconstruction Algorithm Based on Multi-scale Adaptive Upsampling [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 879-891. |
[6] | ZHANG Haocong, LI Tao, XING Lidong, PAN Fengrui. Parallel Implementation of OpenVX Feature Extraction Functions in Programmable Processing Architecture [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1583-1593. |
[7] | WANG Zhongmin, ZHAO Yupeng, ZHENG Ronglin, HE Yan, ZHANG Jiawen, LIU Yang. Survey of Research on EEG Signal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 760-774. |
[8] | ZHAO Pengfei, XIE Linbo, PENG Li. Deep Small Object Detection Algorithm Integrating Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937. |
[9] | NA Zhixiong, FAN Tao, SUN Tao, XIE Xiangying, LAI Guangzhi. Micro-cracks Detection of Solar Cells Based on Few Shot Samples with Multi-loss [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 458-467. |
[10] | LIU Wenqiang, QIU Hangping, LI Hang, YANG Li, LI Yang, MIAO Zhuang, LI Yi, ZHAO Xinxin. Survey of Deep Online Multi-object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2718-2733. |
[11] | WANG Yan, LIANG Qi. Fast 3D-CNN Combined with Depth Separable Convolution for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2860-2869. |
[12] | SUN Yu, WEI Benzheng, LIU Chuan, ZHANG Kuixing, CONG Jinyu. Melting Reduction Auto-Encoder [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1526-1533. |
[13] | ZHAO Xiaoqiang, XU Huiping. Image Semantic Segmentation Method with Hierarchical Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 949-957. |
[14] | SHI Zhicheng, ZHOU Yu. Method of Code Features Automated Extraction [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 456-467. |
[15] | LI Xiangxia, JI Xiaohui, LI Bin. Deep Learning Method for Fine-Grained Image Categorization [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1830-1842. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/