[1] LYU Y Z, YIN H Z, LIU J, et al. Reliable recommendation with review-level explanations[C]//Proceedings of the 2021 IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021: 1548-1558.
[2] HE R N, MCAULEY J. VBPR: visual Bayesian personalized ranking from implicit feedback[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 144-150.
[3] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington: AUAI Press, 2009: 452-461.
[4] ZHANG Y F, AI Q Y, CHEN X, et al. Joint representation learning for top-N recommendation with heterogeneous information sources[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 1449-1458.
[5] CHEN X, CHEN H X, XU H T, et al. Personalized fashion recommendation with visual explanations based on multimodal attention network: towards visually explainable recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 765-774.
[6] KIM T, LEE Y C, SHIN K, et al. MARIO: modality-aware attention and modality-preserving decoders for multimedia recommendation[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 993-1002.
[7] LIU Z Y, ZHOU J. Introduction to graph neural networks[M]. Cham: Springer, 2020.
[8] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174.
[9] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648.
[10] WEI Y W, WANG X, NIE L Q, et al. MMGCN: multi-modal graph convolution network for personalized recommendation of micro-video[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1437-1445.
[11] WEI Y W, WANG X, NIE L Q, et al. Graph-refined convolutional network for multimedia recommendation with implicit feedback[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3541-3549.
[12] ZHANG J H, ZHU Y Q, LIU Q, et al. Mining latent structures for multimedia recommendation[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 3872-3880.
[13] ZHOU X, SHEN Z Q. A tale of two graphs: freezing and denoising graph structures for multimodal recommendation[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 935-943.
[14] 孙秀娟, 孙福振, 李鹏程, 等. 融合掩码自编码器的自适应增强序列推荐[J]. 计算机科学与探索, 2024, 18(12): 3324-3334.
SUN X J, SUN F Z, LI P C, et al. Fusion of masked autoencoder for adaptive augmentation sequential recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3324-3334.
[15] 金海波, 冯雨静. 社交知识感知网络推荐算法[J]. 计算机科学与探索, 2025, 19(4): 1105-1114.
JIN H B, FENG Y J. Social knowledge-aware network recommendation algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1105-1114.
[16] YU P H, TAN Z Y, LU G M, et al. Multi-view graph convolutional network for multimedia recommendation[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 6576-6585.
[17] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 8748-8763.
[18] MCPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a feather: homophily in social networks[J]. Annual Review of Sociology, 2001, 27: 415-444.
[19] CHEN Y, WU L, ZAKI M. Iterative deep graph learning for graph neural networks: better and robust node embeddings[C]//Advances in Neural Information Processing Systems 33, 2020: 19314-19326.
[20] CHEN J, FANG H, SAAD Y. Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection[J]. Journal of Machine Learning Research, 2009, 10: 1989-2012.
[21] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-07-16]. https://arxiv.org/abs/1710.10903.
[22] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 1263-1272.
[23] YANG Z. XLNet: generalized autoregressive pretraining for language understanding[EB/OL]. [2024-07-16]. https://arxiv.org/abs/1906.08237.
[24] HOU Z Y, LIU X, CEN Y K, et al. GraphMAE: self-supervised masked graph autoencoders[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 594-604.
[25] KIM Y, KIM T, SHIN W Y, et al. MONET: modality-embracing graph convolutional network and target-aware attention for multimedia recommendation[C]//Proceedings of the 17th ACM International Conference on Web Search and Data Mining. New York: ACM, 2024: 332-340.
[26] MCAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 43-52.
[27] ZHANG J H, ZHU Y Q, LIU Q, et al. Latent structure mining with contrastive modality fusion for multimedia recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9): 9154-9167. |