[1] LUO H, JIANG W, FAN X, et al. A survey on deep learning based person re-identification[J]. Acta Automatica Sinica, 2019, 45(11): 2032-2049.
[2] ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification: past, present and future[EB/OL]. [2024-11-06]. https://arxiv.org/abs/1610.02984.
[3] LIN X Y, LI J X, MA Z Y, et al. Learning modal-invariant and temporal-memory for video-based visible-infrared person re-identification[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 20941-20950.
[4] WU A C, ZHENG W S, YU H X, et al. RGB-infrared cross-modality person re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5390-5399.
[5] YE M, LAN X Y, LI J W, et al. Hierarchical discriminative learning for visible thermal person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 7501-7508.
[6] WU Q, DAI P Y, CHEN J, et al. Discover cross-modality nuances for visible-infrared person re-identification[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4330-4339.
[7] HUANG N C, LIU J N, LUO Y J, et al. Exploring modality-shared appearance features and modality-invariant relation features for cross-modality person re-identification[J]. Pattern Recognition, 2023, 135: 109145.
[8] LI D G, WEI X, HONG X P, et al. Infrared-visible cross-modal person re-identification with an X modality[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 4610-4617.
[9] WANG Z X, WANG Z, ZHENG Y Q, et al. Learning to reduce dual-level discrepancy for infrared-visible person re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 618-626.
[10] YANG B, YE M, CHEN J, et al. Augmented dual-contrastive aggregation learning for unsupervised visible-infrared person re-identification[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 2843-2851.
[11] LU Y, WU Y, LIU B, et al. Cross-modality person re-identification with shared-specific feature transfer[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13376-13386.
[12] ZHANG Z Y, JIANG S, HUANG C, et al. RGB-IR cross-modality person ReID based on teacher-student GAN model[J]. Pattern Recognition Letters, 2021, 150: 155-161.
[13] WANG G A, ZHANG T Z, CHENG J, et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3622-3631.
[14] ZHANG Q, LAI C Z, LIU J N, et al. FMCNet: feature-level modality compensation for visible-infrared person re-identification[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7339-7348.
[15] ZHONG X, LU T Y, HUANG W X, et al. Visible-infrared person re-identification via colorization-based siamese generative adversarial network[C]//Proceedings of the 2020 International Conference on Multimedia Retrieval. New York: ACM, 2020: 421-427.
[16] LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 6153-6162.
[17] XIE S N, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5987-5995.
[18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-11-06]. https://arxiv.org/abs/1409.1556.
[20] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[21] YE M, SHEN J B, CRANDALL D J, et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 229-247.
[22] YE M, SHEN J B, LIN G J, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872-2893.
[23] CHEN Y, WAN L, LI Z H, et al. Neural feature search for RGB-infrared person re-identification[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 587-597.
[24] HAO X, ZHAO S Y, YE M, et al. Cross-modality person re-identification via modality confusion and center aggregation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 16383-16392.
[25] YANG M X, HUANG Z Y, HU P, et al. Learning with twin noisy labels for visible-infrared person re-identification[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14288-14297.
[26] ZHANG Y K, WANG H Z. Diverse embedding expansion network and low-light cross-modality benchmark for visible-infrared person re-identification[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 2153-2162.
[27] HE L, CHENG D, WANG N, et al. Exploring homogeneous and heterogeneous consistent label associations for unsupervised visible-infrared person ReID[EB/OL]. [2024-11-06].https://arxiv.org/abs/2402.00672.
[28] SHI J, YIN X, CHEN Y, et al. Multi-memory matching for unsupervised visible-infrared person re-identification[C]//Proceedings of the 18th European Conference on Computer Vision. Cham: Springer, 2024: 456-474.
[29] WU R Q, JIAO B L, WANG W X, et al. Enhancing visible-infrared person re-identification with modality- and instance-aware visual prompt learning[C]//Proceedings of the 2024 International Conference on Multimedia Retrieval. New York: ACM, 2024: 579-588.
[30] YU X Y, DONG N, ZHU L H, et al. CLIP-driven semantic discovery network for visible-infrared person re-identification[J]. IEEE Transactions on Multimedia, 2025, 27: 4137-4150. |