
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (10): 2782-2792.DOI: 10.3778/j.issn.1673-9418.2501037
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
ZHANG Yuchen, ZHU Xiaoxu, LI Peifeng
Online:2025-10-01
Published:2025-09-30
张宇晨,朱晓旭,李培峰
ZHANG Yuchen, ZHU Xiaoxu, LI Peifeng. Research on Knowledge Graph Completion Based on Paired Relation Vectors Convolution[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2782-2792.
张宇晨, 朱晓旭, 李培峰. 基于成对关系向量卷积的知识图谱补全研究[J]. 计算机科学与探索, 2025, 19(10): 2782-2792.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2501037
| [1] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250. [2] MILLER G A. WordNet[J]. Communications of the ACM, 1995, 38(11): 39-41. [3] SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 697-706. [4] MOTTIN D, LISSANDRINI M, VELEGRAKIS Y, et al. Exemplar queries: a new way of searching[J]. The VLDB Journal, 2016, 25(6): 741-765. [5] HAO Y C, ZHANG Y Z, LIU K, et al. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 221-231. [6] GUO Q Y, ZHUANG F Z, QIN C, et al. A survey on know-ledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8):3549-3568. [7] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013: 2787-2795. [8] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, 2011: 809-816. [9] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 1811-1818. [10] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3): 3009-3016. [11] SHANG B, ZHAO Y L, LIU J, et al. LAFA: multimodal knowledge graph completion with link aware fusion and aggregation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8957-8965. [12] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28(1): 1112-1119. [13] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2015, 29(1): 2181-2187. [14] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 687-696. [15] FAN M, ZHOU Q, CHANG E, et al. Transition-based knowledge graph embedding with relational mapping properties[C]//Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation, 2014: 328-337. [16] CHAO L L, HE J S, WANG T F, et al. PairRE: knowledge graph embeddings via paired relation vectors[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 4360-4369. [17] FANG Y, LU W, LIU X D, et al. CircularE: a complex space circular correlation relational model for link prediction in knowledge graph embedding[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31: 3162-3175. [18] JIN L, YAO Z, CHEN M Y, et al. A comprehensive study on knowledge graph embedding over relational patterns based on rule learning[C]//Proceedings of the 22nd International Semantic Web Conference. Cham: Springer, 2023: 290-308. [19] YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 2nd International Conference on Learning Representations, 2014. [20] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning, 2016: 2071-2080. [21] NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 1955-1961. [22] KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graphs[C]//Advances in Neural Information Processing Systems 31, 2018: 4289-4300. [23] ZHANG W, PAUDEL B, ZHANG W, et al. Interaction embeddings for prediction and explanation in knowledge graphs[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 96-104. [24] XU W T, ZHENG S, HE L, et al. SEEK: segmented embedding of knowledge graphs[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3888-3897. [25] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 327-333. [26] JIANG X T, WANG Q, WANG B. Adaptive convolution for multi-relational learning[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 978-987. [27] BALA?EVI? I, ALLEN C, HOSPEDALES T M. Hypernetwork knowledge graph embeddings[C]//Proceedings of the 28th International Conference on Artificial Neural Networks. Cham: Springer, 2019: 553-565. [28] ZHOU Z H, WANG C, FENG Y, et al. JointE: jointly utilizing 1D and 2D convolution for knowledge graph embedding[J]. Knowledge-Based Systems, 2022, 240: 108100. [29] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//The Semantic Web: 15th International Conference. Cham: Springer, 2018: 593-607. [30] SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3060-3067. [31] LIU W J, REN Z J, CHEN L. Knowledge reasoning based on graph neural networks with multi-layer top-p message passing and sparse negative sampling[J]. Knowledge-Based Systems, 2025, 311: 113063. [32] LIU W, WANG Z. Event relation extraction based on heterogeneous graph attention networks and event ontology direction induction[J]. Tsinghua Science and Technology, 2024. DOI: 10.26599/TST.2024.9010104. [33] ZHANG Z L, LI Z F, LIU H, et al. Multi-scale dynamic convolutional network for knowledge graph embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2335-2347. [34] WANG C X, WANG X, LI Z, et al. HyConvE: a novel embedding model for knowledge hypergraph link prediction with convolutional neural networks[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 188-198. [35] LI Z, WANG C X, WANG X, et al. HJE: joint convolutional representation learning for knowledge hypergraph completion[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(8): 3879-3892. [36] FENG J Z, WEI Q K, CUI J M, et al. Novel translation knowledge graph completion model based on 2D convolution[J]. Applied Intelligence, 2022, 52(3): 3266-3275. [37] JIANG D, WANG R G, XUE L X, et al. Multisource hierarchical neural network for knowledge graph embedding[J]. Expert Systems with Applications, 2024, 237: 121446. [38] LIN X V, SOCHER R, XIONG C M. Multi-hop knowledge graph reasoning with reward shaping[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3243-3253. |
| [1] | WEI Zongyue, QIU Dawei, LIU Jing, LI Zhenjiang, CHANG Shaohua. Research and Progress of Deep Learning in Diagnosis of Upper Limb Fractures [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2341-2362. |
| [2] | LA Chao, LI Miao, ZHANG Feng, ZHANG Cuiting. Design of Energy-Efficient CNN Accelerator [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2520-2531. |
| [3] | Anggeluma, WANG Siriguleng, SI Qintu. Overview of Research on Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2302-2318. |
| [4] | ZHANG Limin, LI Yang, CAI Hao, YAN Hao. Multi-level Channel Fusion Method for Speech Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2219-2228. |
| [5] | LI Shunyong, LI Jiaming, CAO Fuyuan, ZHENG Mengjiao. Deep Multi-view Clustering Network Integrating Local and Global Features [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2085-2098. |
| [6] | CHEN Xu, ZHANG Qi, WANG Shuyang, JING Yongjun. Adaptive Product Space Discrete Dynamic Graph Link Prediction Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1820-1831. |
| [7] | FENG Yong, LUAN Chaojie, WANG Rongbing, XU Hongyan, ZHANG Yonggang. Aggregating Global Interaction and Local Interaction for Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1909-1917. |
| [8] | GAO Lei, QIAO Haowei, LIANG Dongsheng, MIN Fan, YANG Mei. Efficient Seismic Denoising Transformer with Gradient Prediction and Parameter-Free Attention [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1342-1352. |
| [9] | LI Guowei, LIU Jing, CAO Hui, JIANG Liang. Research Review of Deep Learning in Colon Polyp Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1198-1216. |
| [10] | YE Zhihong, WU Yunbing, DAI Sichong, ZENG Zhihong. Multi-level Fusion Knowledge Graph Completion Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 724-737. |
| [11] | JING Boxiang, WANG Hairong, WANG Tong, YANG Zhenye. Dual-Layer Fusion Knowledge Reasoning with Enhanced Multi-modal Features [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 406-416. |
| [12] | JIANG Runze, LIU Jing, MA Jingang, GUO Zhen, LI Ming. Research Progress of Deep Learning in Classification and Diagnosis of Melanoma [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2615-2634. |
| [13] | WANG Yongwei, WEI Dejian, CAO Hui, JIANG Liang. Review of Deep Learning Applications in Heart Failure Detection [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 65-78. |
| [14] | GUO Jialin, ZHI Min, YIN Yanjun, GE Xiangwei. Review of Research on CNN and Visual Transformer Hybrid Models in Image Processing [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 30-44. |
| [15] | WU Mengke, GAO Xindan. Semantic Segmentation Algorithm for High Resolution Remote Sensing Images with Dual Encoder [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 187-195. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/