[1] YAMADA M, UEDA K, HORIBA I, et al. Discrimination of the road condition toward understanding of vehicle driving environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2001, 2(1): 26-31.
[2] JOSEPH K J, KHAN S, KHAN F S, et al. Towards open world object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5830-5840.
[3] GUPTA A, NARAYAN S, JOSEPH K J, et al. OW-DETR: open-world detection transformer[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9225-9234.
[4] ZOHAR O, WANG K C, YEUNG S. PROB: probabilistic objectness for open world object detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 11444-11453.
[5] 谢斌红, 张鹏举, 张睿. 结合Graph-FPN与稳健优化的开放世界目标检测[J]. 计算机科学与探索, 2023, 17(12): 2954-2966.
XIE B H, ZHANG P J, ZHANG R. Open world object detection combining graph-FPN and robust optimization[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2954-2966.
[6] CHENG T H, SONG L, GE Y X, et al. YOLO-world: real-time open-vocabulary object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16901-16911.
[7] GUO Z H, LIU C, ZHANG X S, et al. Beyond bounding-box: convex-hull feature adaptation for oriented and densely packed object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8792-8801.
[8] ZHANG K, XIONG F, SUN P Z, et al. Double anchor R-CNN for human detection in a crowd[EB/OL]. [2025-01-18]. https:// arxiv.org/abs/1909.09998.
[9] CHOI H K, PAIK C K, KO H W, et al. Recurrent DETR: transformer-based object detection for crowded scenes[J]. IEEE Access, 2023, 11: 78623-78643.
[10] ZHANG S F, WEN L Y, BIAN X, et al. Occlusion-aware R-CNN: detecting pedestrians in a crowd[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 657-674.
[11] XIE J, PANG Y W, CHOLAKKAL H, et al. PSC-Net: learning part spatial co-occurrence for occluded pedestrian detection[J]. Science China Information Sciences, 2021, 64(2): 120103.
[12] ZHANG M, GUO Y N, WANG H D, et al. AODGCN: adaptive object detection with attention-guided dynamic graph convolutional network[J]. Computer Vision and Image Under-standing, 2025, 258: 104386.
[13] CHEN P Y, WANG Y H, LIU H W. GCN-YOLO: YOLO based on graph convolutional network for SAR vehicle target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4013005.
[14] 姜彦吉, 冯宇宙, 董浩, 等. 自动驾驶场景类间相似特征自适应分类网络[J]. 计算机科学与探索, 2024, 18(11): 3051-3064.
JIANG Y J, FENG Y Z, DONG H, et al. Adaptive classification network for similar features between classes in automatic driving scenarios[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 3051-3064.
[15] HUANG J, LI T R. Small object detection by DETR via information augmentation and adaptive feature fusion[C]//Proceedings of the 2024 ACM ICMR Workshop on Multimodal Video Retrieval. New York: ACM, 2024: 39-44.
[16] LI Y J, LI S S, DU H H, et al. YOLO-ACN: focusing on small target and occluded object detection[J]. IEEE Access, 2020, 8: 227288-227303.
[17] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2025-01-18]. https://arxiv.org/abs/1609.02907.
[18] QIN Z Q, ZHANG P Y, WU F, et al. FcaNet: frequency channel attention networks[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 763-772.
[19] YANG Z X, ZHU L C, WU Y, et al. Gated channel transformation for visual recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11791-11800.
[20] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[21] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th Euro-pean Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[22] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[23] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. [2025-01-19]. https://arxiv.org/abs/2010.04159.
[24] LIANG W T, XUE F, LIU Y H, et al. Unknown sniffer for object detection: don’t turn a blind eye to unknown objects[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3230-3239.
[25] SHMELKOV K, SCHMID C, ALAHARI K. Incremental learning of object detectors without catastrophic forgetting[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3400-3409. |