Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (10): 2219-2233.DOI: 10.3778/j.issn.1673-9418.2112118
• Surveys and Frontiers • Previous Articles Next Articles
Received:
2021-12-29
Revised:
2022-05-13
Online:
2022-10-01
Published:
2022-10-14
About author:
FAN Yuanyuan, born in 1997, M.S. candidate. Her research interests include organization of information and knowledge graph.Supported by:
通讯作者:
+ E-mail: tmbs300600@163.com作者简介:
范媛媛(1997—),女,河南孟州人,硕士研究生,主要研究方向为信息组织、知识图谱。基金资助:
CLC Number:
FAN Yuanyuan, LI Zhongmin. Research and Application Progress of Chinese Medical Knowledge Graph[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2219-2233.
范媛媛, 李忠民. 中文医学知识图谱研究及应用进展[J]. 计算机科学与探索, 2022, 16(10): 2219-2233.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2112118
[1] | SINGHAL A. Introducing the knowledge graph: things, not strings[J]. Official Google Blog, 2012, 5: 16. |
[2] | 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. |
LIU Q, LI Y, DUAN H, et al. Knowledge graph construction technology[J]. Journal of Computer Research and Develop-ment, 2016, 53(3): 582-600. | |
[3] |
LEHMANN J, ISELE R, JAKOB M, et al. DBpedia: a large-scale, multilingual knowledge base extracted from wikipedia[J]. Semantic Web, 2015, 6(2): 167-195.
DOI URL |
[4] | BOLLACKER K D, COOK R P, TUFTS P. Freebase: a shared database of structured general human knowledge[C]// Procee-dings of the 22nd AAAI Conference on Artificial Intelligence, Vancouver, Jul 22-26, 2007. Menlo Park: AAAI, 2007: 1962-1963. |
[5] |
SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a large ontology from Wikipedia and WordNet[J]. Journal of Web Semantics, 2008, 6(3): 203-217.
DOI URL |
[6] |
XU B, LIANG J, XIE C, et al. CN-DBpedia2: an extraction and verification framework for enriching Chinese encyclopedia knowledge base[J]. Data Intelligence, 2019, 1(3): 271-288.
DOI URL |
[7] | NIU X, SUN X R, WANG H F, et al. Zhishi.me-weaving Chinese linking open data[C]// LNCS 7032: Proceedings of the 10th International Semantic Web Conference, Bonn, Oct 23-27, 2011. Berlin, Heidelberg: Springer, 2011: 205-220. |
[8] | CHEN H J, HU N, QI G L, et al. OpenKG chain: a blockchain infrastructure for open knowledge graphs[J]. Data Intelli-gence, 2021, 3(2): 205-227. |
[9] |
MCDONALD F S, ELKIN P L. UMLS concept indexing for production databases: a feasibility study[J]. Journal of the American Medical Informatics Association, 2001, 8(5): 512-514.
PMID |
[10] | DONNELLY K. SNOMED C T. The advanced terminology and coding system for eHealth[J]. Studies in Health Techno-logy and Informatics, 2006, 121: 279-290. |
[11] | 李丹亚, 胡铁军, 李军莲, 等. 中文一体化医学语言系统的构建与应用[J]. 情报杂志, 2011, 30(2): 147-151. |
LI Y D, HU T J, LI J L, et al. Construction and application of Chinese unified medical language system[J]. Journal of Intelligence, 2011, 30(2): 147-151. | |
[12] | 贾李蓉, 刘静, 于彤, 等. 中医药知识图谱构建[J]. 医学信息学杂志, 2015, 36(8): 51-53. |
JIA L R, LIU J, YU T, et al. Construction of traditional Chinese medicine knowledge graph[J]. Journal of Medical Informatics, 2015, 36(8): 51-53. | |
[13] |
NICHOLSON D N, GREENE C S. Constructing knowledge graphs and their biomedical applications[J]. Computational and Structural Biotechnology Journal, 2020, 18: 1414-1428.
DOI PMID |
[14] | MOHAMED S K, NOUNU A, NOVÁČEK V. Biological applications of knowledge graph embedding models[J]. Brie-fings in Bioinformatics, 2021, 22(2): 1679-1693. |
[15] |
MACLEAN F. Knowledge graphs and their applications in drug discovery[J]. Expert Opinion on Drug Discovery, 2021, 16(9): 1057-1069.
DOI URL |
[16] | 侯梦薇, 卫荣, 陆亮, 等. 知识图谱研究综述及其在医疗领域的应用[J]. 计算机研究与发展, 2018, 55(12): 2587-2599. |
HOU M W, WEI R, LU L, et al. Research review of know-ledge graph and its application in medical domain[J]. Journal of Computer Research and Development, 2018, 55(12): 2587-2599. | |
[17] | 修晓蕾, 吴思竹, 崔佳伟, 等. 医学知识图谱构建研究进展[J]. 中华医学图书情报杂志, 2018, 27(10): 33-39. |
XIU X L, WU S Z, CUI J W, et al. Advances in studies on construction of medical knowledge graphs[J]. Chinese Journal of Medical Library and Information Science, 2018, 27(10): 33-39. | |
[18] | 袁凯琦, 邓扬, 陈道源, 等. 医学知识图谱构建技术与研究进展[J]. 计算机应用研究, 2018, 35(7): 1929-1936. |
YUAN K Q, DENG Y, CHEN D Y, et al. Construction techniques and research development of medical knowledge graph[J]. Application Research of Computers, 2018, 35(7): 1929-1936. | |
[19] | 刘烨宸, 李华昱. 领域知识图谱研究综述[J]. 计算机系统应用, 2020, 29(6): 1-12. |
LIU Y C, LI H Y. Survey on domain knowledge graph res-earch[J]. Computer Systems & Applications, 2020, 29(6): 1-12. | |
[20] | 谭玲, 鄂海红, 匡泽民, 等. 医学知识图谱构建关键技术及研究进展[J]. 大数据, 2021, 7(4): 80-104. |
TAN L, E H H, KUANG Z M, et al. Key technologies and research progress of medical knowledge graph construction[J]. Big Data Research, 2021, 7(4): 80-104. | |
[21] | 赵悦淑, 王军, 王蕊, 等. 中文医学知识图谱研究进展[J]. 中国数字医学, 2021, 16(6): 86-91. |
ZHAO Y S, WANG J, WANG R, et al. Advances in studies on Chinese medical knowledge graph[J]. China Digital Me-dicine, 2021, 16(6): 86-91. | |
[22] | SOOMRO P D, KUMAR S, BANBHRANI A A S, et al. Bio-NER: biomedical named entity recognition using rule-based and statistical learners[J]. International Journal of Ad-vanced Computer Science and Applications, 2017, 8(12): 163-170. |
[23] | LAKEL K, BENDELLA F, BENKHADDA S. Named entity recognition for psychological domain: challenges in document annotation for the Arabic language[C]// Proceedings of the 1st International Conference on Embedded & Distributed Systems, Oran, Dec 17-18, 2017. Piscataway: IEEE, 2017: 39-43. |
[24] | WEEGAR R, PÉREZ A, CASILLAS A, et al. Deep medical entity recognition for Swedish and Spanish[C]// Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine, Madrid, Dec 3-6, 2018. Piscataway: IEEE, 2018: 1595-1601. |
[25] | WEEGAR R, PÉREZ A, CASILLAS A, et al. Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches[J]. BMC Medical Infor-matics and Decision Making, 2019, 19(7): 1-14. |
[26] | 王昊奋, 漆桂林, 陈华钧. 知识图谱方法、实践与应用[M]. 北京: 电子工业出版社, 2019. |
WANG H F, QI G L, CHEN H J. Knowledge graph method, practice and application[M]. Beijing: Publishing House of Electronics Industry, 2019. | |
[27] | 肖仰华, 徐波, 林欣, 等. 知识图谱概念与技术[M]. 北京: 电子工业出版社, 2020. |
XIAO Y H, XU B, LIN X, et al. Concept and technology of knowledge graph[M]. Beijing: Publishing House of Electronics Industry, 2020. | |
[28] | SHORTLIFFE E H. Computer-based medical consultations: MYCIN[M]. New York: Elsevier Scientific Publishing Com-pany, Inc., 1976. |
[29] | MINSKY M. A framework for representing knowledge[J]. Computation & Intelligence, 1995: 163-189. |
[30] |
COLLINS A M, QUILLIAN M R. Retrieval time from se-mantic memory[J]. Journal of Verbal Learning and Verbal Behavior, 1969, 8(2): 240-247.
DOI URL |
[31] | BAADER F, HORROCKS I, SATTLER U. Description logics[J]. Foundations of Artificial Intelligence, 2008, 3: 135-179. |
[32] | 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247-261. |
LIU Z Y, SUN M S, LIN Y K, et al. Knowledge represen-tation learning: a review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261. | |
[33] | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositio-nality[C]// Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 3111-3119. |
[34] | BORDES A, USUNIER N, GARCÍA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795. |
[35] | WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1112-1119. |
[36] | JI G L, HE S Z, XU L H, et al. Knowledge graph embed-ding via dynamic graphping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Na-tural Language Processing, Beijing, Jul 26-31, 2015. Strouds-burg: ACL, 2015: 687-696. |
[37] | LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence, Aus-tin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187. |
[38] | XIAO H, HUANG M L, ZHUX Y. TransG: a generative model for knowledge graph embedding[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Lin-guistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 2316-2325. |
[39] |
CHOI W, LEE H. Inference of biomedical relations among chemicals, genes, diseases, and symptoms using knowledge representation learning[J]. IEEE Access, 2019, 7: 179373-179384.
DOI URL |
[40] | CHANG D, BALAŽEVIĆ I, ALLEN C, et al. Benchmark and best practices for biomedical knowledge graph embed-dings[C]// Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing. Stroudsburg: ACL, 2020: 167-176. |
[41] | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710. |
[42] | GROVER A, LESKOVEC J. Node2Vec:scalable feature lear-ning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864. |
[43] | WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1225-1234. |
[44] |
ZHAO C, JIANG J, GUAN Y, et al. EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning[J]. Artificial Intelligence in Medicine, 2018, 87: 49-59.
DOI PMID |
[45] | LI L F, WANG P, WANG Y, et al. PrTransH: embedding probabilistic medical knowledge from real world EMR data[J]. arXiv:1909.00672, 2019. |
[46] |
LI L, WANG P, YAN J, et al. Real-world data medical knowledge graph: construction and applications[J]. Artificial Intelligence in Medicine, 2020, 103(19): 101817.
DOI URL |
[47] | 沈思, 孙豪, 王东波. 基于深度学习表示的医学主题语义相似度计算及知识发现研究[J]. 情报理论与实践, 2020, 43(5): 183-190. |
SHEN S, SUN H, WANG D B. Research on topics semantic similarity calculation and knowledge discovery of medical based on deep learning representation[J]. Information Studies: Theory & Application, 2020, 43(5): 183-190. | |
[48] | 隋明爽, 崔雷. 结合多种特征的CRF模型用于化学物质-疾病命名实体识别[J]. 现代图书情报技术, 2016(10): 91-97. |
SUI M S, CUI L. Extracting chemical and disease named entities with multiple-feature CRF model[J]. New Technology of Library and Information Service, 2016(10): 91-97. | |
[49] | 李丽双, 何红磊, 刘珊珊, 等. 基于词表示方法的生物医学命名实体识别[J]. 小型微型计算机系统, 2016, 37(2): 302-307. |
LI L S, HE H L, LIU S S, et al. Research of word rep-resentations on biomedical named entities recognition[J]. Journal of Chinese Computer Systems, 2016, 37(2): 302-307. | |
[50] | 栗伟, 赵大哲, 李博, 等. CRF与规则相结合的医学病历实体识别[J]. 计算机应用研究, 2015, 32(4): 1082-1086. |
LI W, ZHAO D Z, LI B, et al. Combining CRF and rule based medical named entity recognition[J]. Application Res-earch of Computers, 2015, 32(4): 1082-1086. | |
[51] | LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[J]. arXiv: 1603.01360, 2016. |
[52] | 李丽双, 郭元凯. 基于CNN-BLSTM-CRF模型的生物医学命名实体识别[J]. 中文信息学报, 2018, 32(1): 116-122. |
LI L S, GUO Y K. Biomedical named entity recognition with CNN-BLSTM-CRF[J]. Journal of Chinese Information Processing, 2018, 32(1): 116-122. | |
[53] | 杨培, 杨志豪, 罗凌, 等. 基于注意机制的化学药物命名实体识别[J]. 计算机研究与发展, 2018, 55(7): 1548-1556. |
YANG P, YANG Z H, LUO L, et al. An attention-based approach for chemical compound and drug named entitiy recognition[J]. Journal of Computer Research and Develop-ment, 2018, 55(7): 1548-1556. | |
[54] |
LI L, JIANG Y. Integrating language model and reading control gate in BLSTM-CRF for biomedical named entity recognition[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 17(3): 841-846.
DOI URL |
[55] | GAO W C, ZHENG X H, ZHAO S S. Named entity recog-nition method of Chinese EMR based on BERT-BiLSTM-CRF[C]// Proceedings of the 4th International Conference on Advanced Algorithms and Control Engineering, Sanya, Jan 29-31, 2021. Bristol: IOP Publishing, 2021: 012083. |
[56] |
RAMACHANDRAN R, ARUTCHELVAN K. Named entity recognition on bio-medical literature documents using hybrid based approach[J]. Journal of Ambient Intelligence and Hu-manized Computing, 2021. DOI: 10.1007/s12652-021-03078-z.
DOI |
[57] | KAMBHATLA N. Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction[C]// Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, Barcelona, Jul 21-26, 2004. Stroudsburg: ACL, 2004: 178-181. |
[58] | 刘克彬, 李芳, 刘磊, 等. 基于核函数中文关系自动抽取系统的实现[J]. 计算机研究与发展, 2007, 44(8): 1406-1411. |
LIU K B, LI F, LIU L, et al. Implementation of a kernel-based Chinese relation extraction system[J]. Journal of Com-puter Research and Development, 2007, 44(8): 1406-1411. | |
[59] |
UZUNER O, MAILOA J, RYAN R, et al. Semantic relations for problem-oriented medical records[J]. Artificial Intelligence in Medicine, 2010, 50(2): 63-73.
DOI PMID |
[60] | JI G, LIU K, HE S, et al. Distant supervision for relation extraction with sentence-level attention and entity descrip-tions[C]// Proceedings of the 31st AAAI Conference on Arti-ficial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 3060-3066. |
[61] | FENG J, HUANG M, ZHAO L, et al. Reinforcement learning for relation classification from noisy data[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5779-5786. |
[62] | CARLSON A, BETTERIDGE J, WANG R C, et al. Coupled semi-supervised learning for information extraction[C]// Pro-ceedings of the 3rd International Conference on Web Search and Web Data Mining, New York, Feb 4-6, 2010. New York: ACM, 2010: 101-110. |
[63] | 曹春萍, 何亚喆. 融合BSRU和ATT-CNN的化学物质与疾病的关系抽取方法[J]. 小型微型计算机系统, 2020, 41(4): 794-799. |
CAO C P, HE Y Z. Extracting relationships between che-mical substances and diseases with bidirectional simple re-current unit and attention based convolutional neural net-work[J]. Journal of Chinese Computer Systems, 2020, 41(4): 794-799. | |
[64] | 丁泽源, 杨志豪, 罗凌, 等. 基于深度学习的中文生物医学实体关系抽取系统[J]. 中文信息学报, 2021, 35(5): 70-76. |
DING Z Y, YANG Z H, LUO L, et al. A Chinese bio-medical entity relationship extraction system based on deep learning[J]. Journal of Chinese Information Processing, 2021, 35(5): 70-76. | |
[65] | 高峰, 杨佳欣, 顾进广. 融合关系发现词与深度学习的诊疗关系抽取[J]. 计算机应用与软件, 2021, 38(12): 168-173. |
GAO F, YANG J X, GU J G. Extraction of diagnosis and treatment relationship based on fusion relation discovery words and deep learning[J]. Computer Applications and Soft-ware, 2021, 38(12): 168-173. | |
[66] |
武小平, 张强, 赵芳, 等. 基于BERT的心血管医疗指南实体关系抽取方法[J]. 计算机应用, 2021, 41(1): 145-149.
DOI |
WU X P, ZHANG Q, ZHAO F, et al. Entity relation ex-traction method for guidelines of cardiovascular disease based on bidirectional encoder representation from transfor-mers[J]. Journal of Computer Applications, 2021, 41(1): 145-149. | |
[67] | MCCARTHY J F, LEHNERT W G. Using decision trees for coreference resolution[C]// Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montréal Québec, Aug 20-25, 1995. San Mateo: Morgan Kaufmann, 1995: 1050-1055. |
[68] | 苏佳林, 王元卓, 靳小龙, 等. 自适应属性选择的实体对齐方法[J]. 山东大学学报(工学版), 2020, 50(1): 14-20. |
SU J L, WANG Y Z, JIN X L, et al. Entity alignment method based on adaptive attribute selection[J]. Journal of Shandong University (Engineering Science), 2020, 50(1): 14-20. | |
[69] | 李文娜, 张智雄. 基于联合语义表示的不同知识库中的实体对齐方法研究[J]. 数据分析与知识发现, 2021, 5(7): 1-9. |
LI W N, ZHANG Z X. Entity alignment method for dif-ferent knowledge repositories with joint semantic represen-tation[J]. Data Analysis and Knowledge Discovery, 2021, 5(7): 1-9. | |
[70] |
ZHANG J, ZHANG Z, ZHANG H, et al. From electronic health records to terminology base: a novel knowledge base enrichment approach[J]. Journal of Biomedical Informatics, 2021, 113: 103628.
DOI URL |
[71] | BAGGA A, BALDWIN B. Entity-based cross-document core-ferencing using the vector space model[C]// Proceedings of the 36th Annual Meeting of the Association for Computa-tional Linguistics and 17th International Conference on Com-putational Linguistics, Quebec, Aug 10-14, 1998. Strouds-burg: ACL, 1998: 79-85. |
[72] |
ZHU G, IGLESIAS C A. Exploiting semantic similarity for named entity disambiguation in knowledge graphs[J]. Expert Systems with Applications, 2018, 101: 8-24.
DOI URL |
[73] | HAN X P, ZHAO J. Named entity disambiguation by leve-raging Wikipedia semantic knowledge[C]// Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, Nov 2-6, 2009. New York: ACM, 2009: 215-224. |
[74] | 王静, 谭绍峰, 贺东东, 等. 基于上下文特征的领域文献实体消歧算法[J]. 北京生物医学工程, 2018, 37(4): 398-402. |
WANG J, TAN S F, HE D D, et al. Entity disambiguation algorithm for domain document based on context feature[J]. Beijing Biomedical Engineering, 2018, 37(4): 398-402. | |
[75] |
DUQUE A, STEVENSON M, MARTINEZ-ROMO J, et al. Co-occurrence graphs for word sense disambiguation in the biomedical domain[J]. Artificial Intelligence in Medicine, 2018, 87: 9-19.
DOI PMID |
[76] | VRETINARIS A, LEI C, EFTHYMIOU V, et al. Medical entity disambiguation using graph neural networks[C]// Proceedings of the 2021 International Conference on Ma-nagement of Data. New York: ACM, 2021: 2310-2318. |
[77] |
BOUSQUET C, HENEGAR C, LOUËT A L, et al. Imple-mentation of automated signal generation in pharmacovi-gilance using a knowledge-based approach[J]. International Journal of Medical Informatics, 2005, 74(7/8): 563-571.
DOI URL |
[78] |
CHEN R C, HUANG Y H, BAU C T, et al. A recommenda-tion system based on domain ontology and SWRL for anti-diabetic drugs selection[J]. Expert Systems with Applications, 2012, 39(4): 3995-4006.
DOI URL |
[79] | 沈亚诚, 舒忠梅. 基于案例推理的病历表示与系统架构研究[J]. 南方医科大学学报, 2007, 27(7): 1114-1116. |
SHEN Y C, SHU Z M. Study on medical record repre-sentation and system architecture based on case reasoning[J]. Journal of Southern Medical University, 2007, 27(7): 1114-1116. | |
[80] |
PING X O, TSENG Y J, LIN Y P, et al. A multiple measure-ments case-based reasoning method for predicting recurrent status of liver cancer patients[J]. Computers in Industry, 2015, 69: 12-21.
DOI URL |
[81] | 陈延雪, 杨长春, 葛天一, 等. 基于知识推理的医疗应急响应机制研究[J]. 小型微型计算机系统, 2022, 43(3): 638-643. |
CHEN Y X, YANG C C, GE T Y, et al. Research on me-dical emergency response mechanism based on knowledge reasoning[J]. Journal of Chinese Computer Systems, 2022, 43(3): 638-643. | |
[82] | IOANNIDIS V N, MARQUES A G, GIANNAKIS G B. Graph neural networks for predicting protein functions[C]// Proceedings of the 8th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Proces-sing, Le Gosier, Dec 15-18, 2019. Piscataway: IEEE, 2019: 221-225. |
[83] | WANG S, REN P, CHEN Z, et al. Order-free medicine com-bination prediction with graph convolutional reinforcement learning[C]// Proceedings of the 28th ACM International Con-ference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1623-1632. |
[84] | WOENSEL W V A N, ARMSTRONG C, RAJARATNAM M, et al. Using knowledge graphs to plausibly infer missing associations in EMR data[J]. Public Health and Informatics: Proceedings of MIE, 2021, 281: 417-421. |
[85] | 陈德华, 殷苏娜, 乐嘉锦, 等. 一种面向临床领域时序知识图谱的链接预测模型[J]. 计算机研究与发展, 2017, 54(12): 2687-2697. |
CHEN D H, YIN S N, YUE J J, et al. A link prediction model for clinical temporal knowledge graph[J]. Journal of Computer Research and Development, 2017, 54(12): 2687-2697. | |
[86] |
GONG F, WANG M, WANG H, et al. SMR: medical know-ledge graph embedding for safe medicine recommendation[J]. Big Data Research, 2021, 23: 100174.
DOI URL |
[87] | 李健康, 张春辉. 本体研究及其应用进展[J]. 图书馆论坛, 2004, 24(6): 80-86. |
LI J K, ZHANG C H. Research and application develop-ment on ontology[J]. Library Tribune, 2004, 24(6): 80-86. | |
[88] | SHEPHERD M, SAMPALLI T. Ontology as boundary object[C]// Proceedings of the 12th International ISKO Conference, Mysore, Aug 6-9, 2012. Würzburg: Ergon, 2012: 131-137. |
[89] | 牟冬梅, 张艳侠, 黄丽丽, 等. 基于SNOMED CT和FCA的医学领域本体构建研究[J]. 情报学报, 2013, 32(6): 653-662. |
MU D M, ZHANG Y X, HUANG L L, et al. Constructing medical ontology based on SNOMED CT and FCA[J]. Journal of the China Society for Scientific and Technical Information, 2013, 32(6): 653-662. | |
[90] | 李晓瑛, 李丹亚, 夏光辉, 等. 肿瘤本体构建研究[J]. 数字图书馆论坛, 2015(8): 37-42. |
LI X Y, LI D Y, XIA G H, et al. Research on the cons-truction of tumor ontology[J]. Digital Library Forum, 2015(8): 37-42. | |
[91] | 任慧玲, 李晓瑛, 王哲, 等. 面向分类统计的传统医学疾病本体构建研究[J]. 中华医学图书情报杂志, 2020, 29(11): 1-7. |
REN H L, LI X Y, WNAG Z, et al. Classification and statistics-oriented development of disease ontology for tra-ditional Chinese medicine[J]. Chinese Journal of Medical Library and Information Science, 2020, 29(11): 1-7. | |
[92] | HOU L, WU M, KANG H Y, et al. PMO: a knowledge representation model towards precision medicine[J]. Mathe-matical Biosciences and Engineering, 2020, 17(4): 4098-4114. |
[93] | LIN K H, WU M S, WANG X L, et al. MEDLedge: a Q&A based system for constructing medical knowledge base[C]// Proceedings of the 11th International Conference on Com-puter Science & Education, Nagoya, Aug 23-25, 2016. Pis-cataway: IEEE, 2016: 485-489. |
[94] | 刘燕, 傅智杰, 李姣, 等. 医学百科知识图谱构建[J]. 中华医学图书情报杂志, 2018, 27(6): 28-34. |
LIU Y, FU Z J, LI J, et al. Generation of medical encyc-lopedia knowledge graph[J]. Chinese Journal of Medical Library and Information Science, 2018, 27(6): 28-34. | |
[95] | 魏自强, 郑伟伟, 许永康. 基于百科知识的医疗数据知识图谱构建[J]. 网络安全技术与应用, 2020(10): 86-88. |
WEI Z Q, ZHENG W W, XU Y K. Construction of a medical data knowledge graph based on the encyclopedia knowledge[J]. Network Security Technology & Application, 2020(10): 86-88. | |
[96] | SHI L, LI S, YANG X, et al. Semantic health knowledge graph: semantic integration of heterogeneous medical knowledge and services[J]. BioMed Research International, 2017: 2858423. |
[97] | 黄梦醒, 李梦龙, 韩惠蕊. 基于电子病历的实体识别和知识图谱构建的研究[J]. 计算机应用研究, 2019, 36(12): 3735-3739. |
HUANG M X, LI M L, HAN H R. Research on entity recognition and knowledge graph construction based on elec-tronic medical records[J]. Application Research of Computers, 2019, 36(12): 3735-3739. | |
[98] | 谢沂林, 蔡培强, 姜伟, 等. 基于图数据库的电子病历存储方法[J]. 信息技术与信息化, 2021(8): 134-137. |
XIE Y L, CAI P Q, JIANG W, et al. Electronic medical record storage method based on the graph database[J]. In-formation Technology and Informatization, 2021(8): 134-137. | |
[99] | 聂莉莉, 李传富, 许晓倩, 等. 人工智能在医学诊断知识图谱构建中的应用研究[J]. 医学信息学杂志, 2018, 39(6): 7-12. |
NIE L L, LI C F, XU X Q, et al. Study on application of artificial intelligence in the building of medical diagnosis knowledge graph[J]. Journal of Medical Informatics, 2018, 39(6): 7-12. | |
[100] | 阮彤, 孙程琳, 王昊奋, 等. 中医药知识图谱构建与应用[J]. 医学信息学杂志, 2016, 37(4): 8-13. |
RUAN T, SUN C L, WANG H F, et al. Construction of tra-ditional Chinese medicine knowledge graph and its appli-cation[J]. Journal of Medical Informatics, 2016, 37(4): 8-13. | |
[101] | WENG H, LIU Z, YAN S, et al. A framework for automated knowledge graph construction towards traditional Chinese medicine[C]// LNCS 10594: Proceeding of the 2017 Inter-national Conference on Health Information Science. Cham: Springer, 2017: 170-181. |
[102] | 杨佳琦. 基于中文自然语言处理的糖尿病知识图谱构建[D]. 包头: 内蒙古科技大学, 2020. |
YANG J Q. Construction of diabetes knowledge graph based on Chinese natural language processing[D]. Baotou: Inner Mongolia University of Science & Technology, 2020. | |
[103] | 刘勇, 齐梦霁. 基于糖尿病防治的医学知识图谱构建的研究[J]. 医学信息, 2020, 33(18): 11-14. |
LIU Y, QI M J. Research on the construction of medical knowledge graph based on diabetes prevention and treat-ment[J]. Journal of Medical Information, 2020, 33(18): 11-14. | |
[104] | HUANG Z S, YANG J, VAN HARMELEN F, et al. Con-structing knowledge graphs of depression[C]// LNCS 10594: Proceedings of the 6th International Conference on Health Information Science, Moscow, Oct 7-9, 2017. Cham: Springer, 2017: 149-161. |
[105] | 马欢欢. 基于电子病历的癫痫医学知识图谱构建的研究[D]. 曲阜: 曲阜师范大学, 2020. |
MA H H. Research on the construction of epilepsy medical knowledge graph based on electronic medical records[D]. Qufu: Qufu Normal University, 2020. | |
[106] |
CHAI X. Diagnosis method of thyroid disease combining knowledge graph and deep learning[J]. IEEE Access, 2020, 8: 149787-149795.
DOI URL |
[107] |
FANG A, LOU P, HU J, et al. Head and tail entity fusion model in medical knowledge graph construction: case study for pituitary adenoma[J]. JMIR Medical Informatics, 2021, 9(7): e28218.
DOI URL |
[108] | 郑子强. 面向慢性肾脏病中医医案的知识图谱学习与推理研究[D]. 成都: 电子科技大学, 2020. |
ZHENG Z Q. Research on knowledge graph learning and reasoning for TCM prescription of chronic kidney disease[D]. Chengdu: University of Electronic Science and Tech-nology of China, 2020. | |
[109] | 付洋, 刘茂福, 乔瑞. 心脏病中文知识图谱的构建[J]. 武汉大学学报(理学版), 2020, 66(3): 261-267. |
FU Y, LIU M F, QIAO R. Construction of Chinese know-ledge graph of heart disease[J]. Journal of Wuhan Univer-sity (Natural Science Edition), 2020, 66(3): 261-267. | |
[110] | 杨帅, 王小红, 赵志刚, 等. COVID-19知识图谱构建与应用研究[J]. 青岛大学学报(工程技术版), 2021, 36(4): 22-29. |
YANG S, WANG X H, ZHAO Z G, et al. Research on the construction and application of COVID-19 knowledge graph[J]. Journal of Qingdao University (Engineering & Tech-nology Edition), 2021, 36(4): 22-29. | |
[111] | REUMANN M, GIOVANNINI A, NADWORNY B, et al. Cognitive DDx assistant in rare diseases[C]// Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, Jul 18-21, 2018. Piscataway: IEEE, 2018: 3244-3247. |
[112] |
ZHU Q, NGUYEN D T, GRISHAGIN I, et al. An integra-tive knowledge graph for rare diseases, derived from the Genetic and Rare Diseases Information Center (GARD)[J]. Journal of Biomedical Semantics, 2020, 11(1): 1-13.
DOI URL |
[113] | 于彤, 陈华钧, 李敬华. 面向中药新药研发的语义搜索系统[J]. 中国医学创新, 2013, 10(33): 152-154. |
YU T, CHEN H J, LI J H. A semantic search system for pharmaceutical manufacturing in traditional Chinese medi-cine[J]. Medical Innovation of China, 2013, 10(33): 152-154. | |
[114] | 贾李蓉, 于彤, 崔蒙, 等. 中医药学语言系统研究进展[J]. 中国数字医学, 2014, 9(10): 57-59. |
JIA L R, YU T, CUI M, et al. Progress of research on the language system of traditional Chinese medicine[J]. China Digital Medicine, 2014, 9(10): 57-59. | |
[115] |
WANG H L, ZHANG Q P, YUAN J H. Semantically en-hanced medical information retrieval system: a tensor fac-torization based approach[J]. IEEE Access, 2017, 5: 7584-7593.
DOI URL |
[116] | 刘崇. 基于知识图谱的医疗知识搜索研究[D]. 杭州: 浙江理工大学, 2018. |
LIU C. Research of the medical knowledge based on know-ledge graph[D]. Hangzhou: Institutes of Technology of Zhejiang, 2018. | |
[117] | SINGH A V, NEGI A. Towards better drug repositioning using joint learning[C]// Proceedings of the 16th IEEE-India-Council International Conference, Rajkot, Dec 13-15, 2019. Piscataway: IEEE, 2019: 1-4. |
[118] |
PARK C, PARK J, PARK S. AGCN: attention-based graph convolutional networks for drug-drug interaction extraction[J]. Expert Systems with Applications, 2020, 159: 113538.
DOI URL |
[119] |
GELETA D, NIKOLOV A, EDWARDS G, et al. Biological insights knowledge graph: an integrated knowledge graph to support drug development[J]. bioRxiv, 2021. DOI: 10. 1101/2021.10.28.466262.
DOI |
[120] | GENTILE A L, GRUHL D, RISTOSKI P, et al. Personalized knowledge graphs for the pharmaceutical domain[C]// LNCS 11779: Proceedings of the 18th International Semantic Web Conference, Auckland, Oct 26-30, 2019. Cham: Springer, 2019: 400-417. |
[121] | 王昊奋, 张金康, 程小军. 中文开放链接医疗数据的构建[J]. 中国数字医学, 2013, 8(4): 5-8. |
WANG H F, ZHANG J K, CHENG X J. The construction of Chinese open link medical data[J]. China Digital Me-dicine, 2013, 8(4): 5-8. | |
[122] | ZHAO T. An ontology-based decision support system for interventions based on monitoring medical conditions on patients in hospital wards[D]. Agder: University of Agder, 2014. |
[123] |
武家伟, 孙艳春. 融合知识图谱和深度学习方法的问诊推荐系统[J]. 计算机科学与探索, 2021, 15(8): 1432-1440.
DOI |
WU J W, SUN Y C. Recommendation system for medical consultation integrating knowledge graph and deep learning method[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1432-1440. | |
[124] | FERRUCCI D, LEVAS A, BAGCHI S, et al. Watson: be-yond jeopardy![J]. Artificial Intelligence, 2013, 199: 93-105. |
[125] | 郑懿鸣, 翟洁, 胡晓龙, 等. 基于中医药知识图谱的智能问答与用药推荐系统[J]. 电子技术与软件工程, 2019(20): 134-135. |
ZHENG Y M, ZHAI J, HU X L, et al. Intelligent question answering and medication recommendation system based on the TCM knowledge graph[J]. Electronic Technology & Software Engineering, 2019(20): 134-135. | |
[126] | 王继伟, 梁怀众, 樊伟, 等. 基于中文医疗知识图谱的智能问答系统设计与实现方法[J]. 中国数字医学, 2021, 16(2): 54-58. |
WANG J W, LIANG H Z, FAN W, et al. Design and im-plementation of intelligent Q&A system based on Chinese medical knowledge graph[J]. China Digital Medicine, 2021, 16(2): 54-58. | |
[127] | 田迎, 单娅辉, 王时绘. 基于知识图谱的抑郁症自动问答系统研究[J]. 湖北大学学报(自然科学版), 2020, 42(5): 587-591. |
TIAN Y, SHAN Y H, WANG S H. The research of depre-ssion automatic question answering system based on know-ledge graph[J]. Journal of Hubei University (Natural Science), 2020, 42(5): 587-591. | |
[128] | 任燕春, 赵瑛, 王铁, 等. 基于新冠肺炎知识图谱的智能问答系统研究[J]. 内蒙古科技大学学报, 2021, 40(3): 287-292. |
REN Y C, ZHAO Y, WANG T, et al. Intelligent question and answer system based in COVID-19 knowledge graph[J]. Journal of Inner Mongolia University of Science and Technology, 2021, 40(3): 287-292. | |
[129] | 董佳琳, 张宇航, 徐永康, 等. 基于知识图谱的新冠疫情智能问答系统[J]. 信息技术与信息化, 2021(6): 258-261. |
DONG J L, ZHANG Y H, XU Y K, et al. COVID-19 intel-ligent question and answer system based on knowledge graph[J]. Information Technology and Informatization, 2021(6): 258-261. | |
[130] | LÓPEZ V, RHO V, BRISIMI T S, et al. Benefit graph extraction from healthcare policies[C]// LNCS 11779: Pro-ceedings of the 18th International Semantic Web Confer-ence, Auckland, Oct 26-30, 2019. Cham: Springer, 2019: 471-489. |
[131] | 黄智生, 胡青, 顾进广, 等. 网络智能机器人与自杀监控预警[J]. 中国数字医学, 2019, 14(3): 3-6. |
HUANG Z S, HU Q, GU J G, et al. Web-based intelligent agents for suicide monitoring and early warning[J]. China Digital Medicine, 2019, 14(3): 3-6. | |
[132] | 崔佳伟. 肾细胞癌临床指南多层次知识建模与图谱化表示研究[D]. 北京: 北京协和医学院, 2020. |
CUI J W. Research on multi-level knowledge modeling and graphical representation of clinical guidelines for renal cell carcinoma[D]. Beijing: Peking Union Medical College, 2020. |
[1] | XIA Guangbing, LI Ruixuan, GU Xiwu, LIU Wei. Knowledge Representation Learning Based on Multi-source Information Combination [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 591-597. |
[2] | XUE Dongqian, ZHAI Yanhui, ZHANG Shaoxia, LI Deyu, XU Weihua. Research of Inference Rules on Decision Implication and Variable Decision Implication [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2357-2364. |
[3] | LI Xiang, YANG Xingyao, YU Jiong, QIAN Yurong, ZHENG Jie. Double End Knowledge Graph Convolutional Networks for Recommender Systems [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 176-184. |
[4] | WU Jiawei, SUN Yanchun. Recommendation System for Medical Consultation Integrating Knowledge Graph and Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1432-1440. |
[5] | SHU Shitai, LI Song, HAO Xiaohong, ZHANG Liping. Knowledge Graph Embedding Technology: A Review [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2048-2062. |
[6] | WANG Baoxiang, ZHOU Xianzhong, SHENG Yin, LU Xiaoming, MAO Ke. Research on Interface of Humanware Service-Oriented Decision Support System [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(1): 46-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/