Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (10): 2395-2404.DOI: 10.3778/j.issn.1673-9418.2104104
• Graphics and Image • Previous Articles Next Articles
LI Chunbiao, XIE Linbo+(), PENG Li
Received:
2021-04-20
Revised:
2021-06-07
Online:
2022-10-01
Published:
2021-06-11
About author:
LI Chunbiao, born in 1997, M.S. candidate. His research interests include salient object detection and deep learning.Supported by:
通讯作者:
+ E-mail: xie_linbo@jiangnan.edu.cn作者简介:
李春标(1997—),男,山东聊城人,硕士研究生,主要研究方向为显著性目标检测、深度学习。基金资助:
CLC Number:
LI Chunbiao, XIE Linbo, PENG Li. Salient Object Detection with Feature Hybrid Enhancement and Multi-loss Fusion[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2395-2404.
李春标, 谢林柏, 彭力. 特征混合增强与多损失融合的显著性目标检测[J]. 计算机科学与探索, 2022, 16(10): 2395-2404.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104104
Configurations | | MAE |
---|---|---|
Baseline U-Net | 0.742 | 0.089 |
CAPM | 0.784 | 0.068 |
CAPM+FHEM(CA) | 0.773 | 0.072 |
CAPM+FHEM(ECA) | 0.803 | 0.057 |
Table 1 Performance comparison of different modules in algorithm
Configurations | | MAE |
---|---|---|
Baseline U-Net | 0.742 | 0.089 |
CAPM | 0.784 | 0.068 |
CAPM+FHEM(CA) | 0.773 | 0.072 |
CAPM+FHEM(ECA) | 0.803 | 0.057 |
Configurations | | MAE |
---|---|---|
CAPM+FHEM+ | 0.789 | 0.069 |
CAPM+FHEM+ | 0.787 | 0.064 |
CAPM+FHEM+ | 0.792 | 0.066 |
CAPM+FHEM+ | 0.803 | 0.057 |
Table 2 Performance comparison of different losses in algorithm
Configurations | | MAE |
---|---|---|
CAPM+FHEM+ | 0.789 | 0.069 |
CAPM+FHEM+ | 0.787 | 0.064 |
CAPM+FHEM+ | 0.792 | 0.066 |
CAPM+FHEM+ | 0.803 | 0.057 |
| | | | MAE |
---|---|---|---|---|
1.0 | 1.0 | 1.0 | 0.792 | 0.066 |
1.0 | 1.0 | 2.0 | 0.797 | 0.063 |
0.1 | 0.9 | 2.0 | 0.756 | 0.076 |
0.2 | 0.8 | 2.0 | 0.762 | 0.073 |
0.3 | 0.7 | 2.0 | 0.803 | 0.057 |
0.4 | 0.6 | 2.0 | 0.801 | 0.058 |
0.5 | 0.5 | 2.0 | 0.796 | 0.061 |
Table 3 Performance comparison of RA loss with different coefficients in algorithm
| | | | MAE |
---|---|---|---|---|
1.0 | 1.0 | 1.0 | 0.792 | 0.066 |
1.0 | 1.0 | 2.0 | 0.797 | 0.063 |
0.1 | 0.9 | 2.0 | 0.756 | 0.076 |
0.2 | 0.8 | 2.0 | 0.762 | 0.073 |
0.3 | 0.7 | 2.0 | 0.803 | 0.057 |
0.4 | 0.6 | 2.0 | 0.801 | 0.058 |
0.5 | 0.5 | 2.0 | 0.796 | 0.061 |
Model | ECSSD | DUT-OMRON | DUTS-TE | HKU-IS | SOD | |||||
---|---|---|---|---|---|---|---|---|---|---|
| MAE | | MAE | | MAE | | MAE | | MAE | |
Ours | 0.942 | 0.036 | 0.803 | 0.057 | 0.860 | 0.046 | 0.928 | 0.031 | 0.857 | 0.102 |
CapsNet | 0.887 | 0.052 | 0.703 | 0.063 | 0.799 | 0.048 | 0.880 | 0.039 | — | — |
RAS | 0.921 | 0.056 | 0.786 | 0.062 | 0.831 | 0.059 | 0.913 | 0.045 | 0.850 | 0.124 |
Amulet | 0.915 | 0.059 | 0.743 | 0.098 | 0.778 | 0.084 | 0.897 | 0.051 | 0.806 | 0.141 |
NLDF | 0.905 | 0.063 | 0.753 | 0.080 | 0.812 | 0.066 | 0.902 | 0.048 | 0.841 | 0.124 |
UCF | 0.911 | 0.078 | 0.734 | 0.132 | 0.771 | 0.117 | 0.886 | 0.074 | 0.803 | 0.164 |
RFCN | 0.890 | 0.107 | 0.742 | 0.111 | 0.784 | 0.091 | 0.892 | 0.079 | 0.799 | 0.170 |
ELD | 0.867 | 0.079 | 0.715 | 0.092 | 0.738 | 0.093 | 0.839 | 0.074 | 0.764 | 0.155 |
DCL | 0.890 | 0.143 | 0.739 | 0.097 | 0.782 | 0.088 | 0.885 | 0.072 | 0.823 | 0.141 |
LEGS | 0.827 | 0.118 | 0.669 | 0.133 | 0.655 | 0.138 | 0.766 | 0.119 | 0.734 | 0.196 |
Table 4 Performance comparison of different algorithms on 5 datasets
Model | ECSSD | DUT-OMRON | DUTS-TE | HKU-IS | SOD | |||||
---|---|---|---|---|---|---|---|---|---|---|
| MAE | | MAE | | MAE | | MAE | | MAE | |
Ours | 0.942 | 0.036 | 0.803 | 0.057 | 0.860 | 0.046 | 0.928 | 0.031 | 0.857 | 0.102 |
CapsNet | 0.887 | 0.052 | 0.703 | 0.063 | 0.799 | 0.048 | 0.880 | 0.039 | — | — |
RAS | 0.921 | 0.056 | 0.786 | 0.062 | 0.831 | 0.059 | 0.913 | 0.045 | 0.850 | 0.124 |
Amulet | 0.915 | 0.059 | 0.743 | 0.098 | 0.778 | 0.084 | 0.897 | 0.051 | 0.806 | 0.141 |
NLDF | 0.905 | 0.063 | 0.753 | 0.080 | 0.812 | 0.066 | 0.902 | 0.048 | 0.841 | 0.124 |
UCF | 0.911 | 0.078 | 0.734 | 0.132 | 0.771 | 0.117 | 0.886 | 0.074 | 0.803 | 0.164 |
RFCN | 0.890 | 0.107 | 0.742 | 0.111 | 0.784 | 0.091 | 0.892 | 0.079 | 0.799 | 0.170 |
ELD | 0.867 | 0.079 | 0.715 | 0.092 | 0.738 | 0.093 | 0.839 | 0.074 | 0.764 | 0.155 |
DCL | 0.890 | 0.143 | 0.739 | 0.097 | 0.782 | 0.088 | 0.885 | 0.072 | 0.823 | 0.141 |
LEGS | 0.827 | 0.118 | 0.669 | 0.133 | 0.655 | 0.138 | 0.766 | 0.119 | 0.734 | 0.196 |
[1] | 凌艳, 陈莹. 多尺度上下文信息增强的显著目标检测全卷积网络[J]. 计算机辅助设计与图形学学报, 2019, 31(11): 2007-2016. |
LING Y, CHEN Y. Salient object detection with multiscale context enhanced fully convolutional network[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(11): 2007-2016. | |
[2] |
张守东, 杨明, 胡太. 基于多特征融合的显著性目标检测算法[J]. 计算机科学与探索, 2019, 13(5): 834-845.
DOI |
ZHANG S D, YANG M, HU T. Salient object detection algorithm based on multi-feature fusion[J]. Journal of Fron-tiers of Computer Science and Technology, 2019, 13(5): 834-845. | |
[3] | OH S J, BENENSON R, KHOREVA A, et al. Exploiting sa-liency for object segmentation from image level labels[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 22-25, 2017. Was-hington: IEEE Computer Society, 2017: 5038-5047. |
[4] |
GAO Y, WANG M, TAO D C, et al. 3-D object retrieval and recognition with hypergraph analysis[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4290-4303.
DOI PMID |
[5] |
REN Z X, GAO S H, CHIA L T, et al. Region-based saliency detection and its application in object recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(5): 769-779.
DOI URL |
[6] |
ZHANG F, DU B, ZHANG L P. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184.
DOI URL |
[7] | 于明, 李博昭, 于洋, 等. 基于多图流形排序的图像显著性检测[J]. 自动化学报, 2019, 45(3): 577-592. |
YU M, LI B Z, YU Y, et al. Image saliency detection with multi-graph model and manifold ranking[J]. Acta Automatica Sinica, 2019, 45(3): 577-592. | |
[8] |
常振, 段先华, 鲁文超, 等. 基于多尺度的贝叶斯模型显著性检测[J]. 计算机工程与应用, 2020, 56(11): 207-213.
DOI |
CHANG Z, DUAN X H, LU W C, et al. Multi-scale saliency detection based on Bayesian framework[J]. Computer Eng-ineering and Applications, 2020, 56(11): 207-213. | |
[9] |
时斐斐, 张松龙, 彭力. 结合边缘特征先验引导的深度卷积显著性检测[J]. 计算机工程与应用, 2020, 56(14): 199-206.
DOI |
SHI F F, ZHANG S L, PENG L. Deep convolution saliency detection combined with edge feature prior-based inspec-tion[J]. Computer Engineering and Applications, 2020, 56(14): 199-206. | |
[10] | SCHARFENBERGER C, WONG A, FERGANI K, et al. Statistical textural distinctiveness for salient region detection in natural images[C]// Proceedings of the 2013 IEEE Con-ference on Computer Vision and Pattern Recognition, Port-land, Jun 23-28, 2013. Washington: IEEE Computer Society, 2013: 979-986. |
[11] | KIM J H, HAN D Y, TAI Y W, et al. Salient region detec-tion via high-dimensional color transform[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 24-27, 2014. Washington: IEEE Computer Society, 2014: 883-890. |
[12] | ZHU W J, LIANG S, WEI Y C, et al. Saliency optimization from robust background detection[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Re-cognition, Columbus, Jun 24-27, 2014. Washington: IEEE Computer Society, 2014: 2814-2821. |
[13] | LIU Y, ZHANG Q, ZHANG D W, et al. Employing deep part-object relationships for salient object detection[C]// Pro-ceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1232-1241. |
[14] | KUEN J, WANG Z H, WANG G. Recurrent attentional net-works for saliency detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 3668-3677. |
[15] | ZHANG P P, WANG D, LU H C, et al. Amulet: aggregating multi-level convolutional features for salient object detec-tion[C]// Proceedings of the 2017 IEEE International Con-ference on Computer Vision, Venice, Oct 22-29, 2017. Wa-shington: IEEE Computer Society, 2017: 202-211. |
[16] | LUO Z M, MISHRA A K, ACHKAR A, et al. Non-local deep features for salient object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6593-6601. |
[17] | ZHANG P P, WANG D, LU H C, et al. Learning uncertain convolutional features for accurate saliency detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 212-221. |
[18] |
WANG L Z, WANG L J, LU H C, et al. Salient object detec-tion with recurrent fully convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1734-1746.
DOI URL |
[19] | WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale struc-tural similarity for image quality assessment[C]// Proceedings of the 2003 IEEE Asilomar Conference on Signals, Pacific Grove, Nov 9-12, 2003. Washington: IEEE Computer Society, 2003. |
[20] | FENG M Y, LU H C, DING E. Attentive feedback network for boundary-aware salient object detection[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1623-1632. |
[21] | QIN X B, ZHANG Z C, HUANG C Y, et al. BASNet: boun-dary-aware salient object detection[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Re-cognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7471-7481. |
[22] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convo-lutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Mu-nich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. |
[23] | ZHAO T, WU X Q. Pyramid feature attention network for saliency detection[C]// Proceedings of the 2019 IEEE Confe-rence on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3080-3089. |
[24] | ZHANG L H, WU J, WANG T T, et al. A multistage refine-ment network for salient object detection[J]. IEEE Transac-tions on Image Processing, 2020, 29: 3534-3545. |
[25] | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11531-11539. |
[26] | ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recogni-tion, Florida, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 1597-1604. |
[27] | LEE G, TAI Y W, KIM J. Deep saliency with encoded low level distance map and high level features[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pat-tern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washing-ton: IEEE Computer Society, 2016: 660-668. |
[28] | LI G B, YU Y Z. Deep contrast learning for salient object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 478-487. |
[29] | WANG L J, LU H C, RUAN X, et al. Deep networks for sa-liency detection via local estimation and global search[C]// Proceedings of the 2015 IEEE Conference on Computer Vi-sion and Pattern Recognition, Boston, Jun 7-12, 2015. Wa-shington: IEEE Computer Society, 2015: 3183-3192. |
[1] | ZHU Bingyu, LIU Zhen, ZHANG Jingxiang. COVID-19 Detection Algorithm Combining Grad-CAM and Convolutional Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2108-2120. |
[2] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[3] | OU Yangliu, HE Xi, QU Shaojun. Fully Convolutional Neural Network with Attention Module for Semantic Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145. |
[4] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[5] | TONG Gan, HUANG Libo. Review of Winograd Fast Convolution Technique Research [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 959-971. |
[6] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[7] | LU Zhongda, ZHANG Chunda, ZHANG Jiaqi, WANG Zifei, XU Junhua. Identification of Apple Leaf Disease Based on Dual Branch Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 917-926. |
[8] | LI Zhixin, CHEN Shengjia, ZHOU Tao, MA Huifang. Combining Cascaded Network and Adversarial Network for Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 217-230. |
[9] | REN Longjie, SUN Ying, DING Weiping, JU Hengrong, CAO Jinxin. Multiple Lesions Detection of Fundus Images Based on CNN Algorithm Optimized by Single Population Frog-Leaping Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1762-1772. |
[10] | ZHANG Mengqian, ZHANG Li. Coarse-to-Fine Two-Stage Convolutional Neural Network Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1501-1510. |
[11] | FANG Junting, TAN Xiaoyang. Defect Detection of Metal Surface Based on Attention Cascade R-CNN [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1245-1254. |
[12] | NENG Wenpeng, LU Jun, ZHAO Caihong. Survey of Sleep Staging Based on Relational Induction Biases [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1026-1037. |
[13] | ZHAO Xiaoqiang, XU Huiping. Image Semantic Segmentation Method with Hierarchical Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 949-957. |
[14] | MA Dan, WAN Liang, CHENG Qiqin, SUN Zhiqiang. Research on Application of Attention-CNN in Malware Detection [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 670-681. |
[15] | ZHANG Li, QIU Cunyue, ZHANG Kaixin, ZHANG Dabo, LUO Hao. Optimized Layered Convolutional Sub-health Recognition Algorithm of Improved Capsule Network [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 712-722. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/