Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (11): 2456-2470.DOI: 10.3778/j.issn.1673-9418.2203024
• Surveys and Frontiers • Previous Articles Next Articles
LI Leixiao1,2, ZHENG Yue1,+(), GAO Haoyu1, XIONG Xiao3, NIU Tieming1, DU Jinze1, GAO Jing4
Online:
2022-11-01
Published:
2022-11-16
About author:
LI Leixiao, born in 1978, Ph.D., professor. His research interests include cloud computing, big data processing, data mining, etc.李雷孝1,2, 郑岳1,+(), 高昊昱1, 熊啸3, 牛铁铭1, 杜金泽1, 高静4
通讯作者:
+ E-mail: 847256122@qq.com作者简介:
李雷孝(1978—),男,山东成武人,博士,教授,主要研究方向为云计算、大数据处理、数据挖掘等。CLC Number:
LI Leixiao, ZHENG Yue, GAO Haoyu, XIONG Xiao, NIU Tieming, DU Jinze, GAO Jing. Survey of Research on Smart Contract Vulnerability Detection[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2456-2470.
李雷孝, 郑岳, 高昊昱, 熊啸, 牛铁铭, 杜金泽, 高静. 智能合约漏洞检测研究综述[J]. 计算机科学与探索, 2022, 16(11): 2456-2470.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2203024
攻击类型 | 标志性事件 | 时间 | 影响 |
---|---|---|---|
可重入漏洞 | TheDAO | 2016 | 价值6 000万美金以太币被盗取,以太坊硬分叉 |
整数溢出 | BeautyChain | 2018 | BEC代币无限复制,代币价格跳水 |
拒绝服务攻击 | King of the Ether Throne | 2016 | 游戏玩家的补偿和未接受款项无法退回玩家的钱包 |
Delegatecall委托调用 | Parity Multisig Wallet的第二次入侵 | 2017 | 合约失效,用户钱包被锁死影响约51万个ETH,价值约1.5亿美元 |
51%攻击 | ETC网络遭受51%攻击 | 2019 | 约22万个ETC遭攻击,价值约110万美元 |
针对供应链的攻击 | 门罗币官方钱包文件被恶意替换 | 2019 | 用户私钥和助记词被窃取 |
DNS劫持 | 以太坊钱包Myetherwallet遭DNS劫持 | 2018 | 价值15.3万美金以太币转入劫持者账户 |
针对交易所的攻击 | KuCoin交易所被盗 | 2020 | 亚洲交易所KuCoin热钱包被盗,价值2.8亿美金 |
权限错误 | Poly NetWork | 2021 | 失窃资产超6.1亿美金,是DeFi有史以来数额最大的一次进攻事件 |
闪电贷攻击 | Beanstalk Farm遭闪电贷攻击 | 2022 | 协议损失约1.82亿美金 |
Table 1 List of major events in blockchain security
攻击类型 | 标志性事件 | 时间 | 影响 |
---|---|---|---|
可重入漏洞 | TheDAO | 2016 | 价值6 000万美金以太币被盗取,以太坊硬分叉 |
整数溢出 | BeautyChain | 2018 | BEC代币无限复制,代币价格跳水 |
拒绝服务攻击 | King of the Ether Throne | 2016 | 游戏玩家的补偿和未接受款项无法退回玩家的钱包 |
Delegatecall委托调用 | Parity Multisig Wallet的第二次入侵 | 2017 | 合约失效,用户钱包被锁死影响约51万个ETH,价值约1.5亿美元 |
51%攻击 | ETC网络遭受51%攻击 | 2019 | 约22万个ETC遭攻击,价值约110万美元 |
针对供应链的攻击 | 门罗币官方钱包文件被恶意替换 | 2019 | 用户私钥和助记词被窃取 |
DNS劫持 | 以太坊钱包Myetherwallet遭DNS劫持 | 2018 | 价值15.3万美金以太币转入劫持者账户 |
针对交易所的攻击 | KuCoin交易所被盗 | 2020 | 亚洲交易所KuCoin热钱包被盗,价值2.8亿美金 |
权限错误 | Poly NetWork | 2021 | 失窃资产超6.1亿美金,是DeFi有史以来数额最大的一次进攻事件 |
闪电贷攻击 | Beanstalk Farm遭闪电贷攻击 | 2022 | 协议损失约1.82亿美金 |
漏洞层级 | 漏洞类型 |
---|---|
Solidity代码层 | 未校验返回值 |
整数溢出漏洞 | |
权限控制漏洞 | |
资产冻结 | |
拒绝服务攻击漏洞 | |
EVM执行层 | 重入漏洞 |
短地址攻击 | |
代码注入 | |
区块链系统层 | 时间戳依赖 |
可预测的随机处理 | |
交易顺序依赖 |
Table 2 Ethereum vulnerabilities classification
漏洞层级 | 漏洞类型 |
---|---|
Solidity代码层 | 未校验返回值 |
整数溢出漏洞 | |
权限控制漏洞 | |
资产冻结 | |
拒绝服务攻击漏洞 | |
EVM执行层 | 重入漏洞 |
短地址攻击 | |
代码注入 | |
区块链系统层 | 时间戳依赖 |
可预测的随机处理 | |
交易顺序依赖 |
方法 | 检测工具 | 准确率/% | 支持漏洞数量 | 平均检测速度/s |
---|---|---|---|---|
形式化验证 | VaaS | 72.54 | 8 | 166.2 |
符号执行 | Oyente | 60.54 | 6 | 27.3 |
模糊测试 | ContractFuzzer | 67.89 | 6 | 279.7 |
机器学习 | DR-GCN | 76.16 | 3 | 3.4 |
特征匹配 | Slither | 57.82 | 7 | 10.5 |
Table 3 Evaluation of various vulnerabilities detection methods
方法 | 检测工具 | 准确率/% | 支持漏洞数量 | 平均检测速度/s |
---|---|---|---|---|
形式化验证 | VaaS | 72.54 | 8 | 166.2 |
符号执行 | Oyente | 60.54 | 6 | 27.3 |
模糊测试 | ContractFuzzer | 67.89 | 6 | 279.7 |
机器学习 | DR-GCN | 76.16 | 3 | 3.4 |
特征匹配 | Slither | 57.82 | 7 | 10.5 |
[1] | 曹傧, 林亮, 李云, 等. 区块链研究综述[J]. 重庆邮电大学学报(自然科学版), 2020, 32(1): 1-14. |
CAO B, LIN L, LI Y, et al. Review of blockchain research[J]. Journal of Chongqing University of Posts and Telecommu-nications (Natural Science Edition), 2020, 32(1): 1-14. | |
[2] | NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[EB/OL]. (2018-06-10)[2022-01-16]. https://bitcoin.org/bitcoin.pdf. |
[3] | HOFMAN D L. Legally Speaking: smart contracts, archival bonds, and linked data in the blockchain[C]// Proceedings of the 26th International Conference on Computer Comm-unication and Networks, Vancouver, Jul 31-Aug 3, 2017. Piscataway: IEEE, 2017: 1-4. |
[4] |
熊玲, 李发根, 刘志才. 车联网环境下基于区块链技术的条件隐私消息认证方案[J]. 计算机科学, 2020, 47(11): 55-59.
DOI |
XIONG L, LI F G, LIU Z C. Conditional privacy-preserving authentication scheme based on blockchain for vehicular ad hoc networks[J]. Computer Science, 2020, 47(11): 55-59.
DOI |
|
[5] |
王春东, 罗婉薇, 莫秀良, 等. 车联网互信认证与安全通信综述[J]. 计算机科学, 2020, 47(11): 1-9.
DOI |
WANG C D, LUO W W, MO X L, et al. Survey on mutual trust authentication and secure communication of Internet of vehicles[J]. Computer Science, 2020, 47(11): 1-9. | |
[6] |
KANG J, YU R, HUANG X, et al. Blockchain for secure and efficient data sharing in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2019, 6(3): 4660-4670.
DOI URL |
[7] | HATIM S M, ELIAS S J, ALI R M, et al. Blockchain-based Internet of vehicles (BIoV): an approach towards smart cities development[C]// Proceedings of the 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering, Jaipur, Dec 1-3, 2020. Piscataway: IEEE, 2020: 1-4. |
[8] |
QI X, EMMANUEL S, ABLA S, et al. BBDS: blockchain-based data sharing for electronic medical records in cloud environments[J]. Information, 2017, 8(2): 44.
DOI URL |
[9] | AZARIA A, EKBLAW A, VIEIRA T, et al. MedRec: using blockchain for medical data access and permission manag-ement[C]// Proceedings of the 2nd International Conference on Open and Big Data, Vienna, Austria, Aug 22-24, 2016. Washington: IEEE Computer Society, 2016: 25-30. |
[10] | ZHANG P. Blockchain technology use cases in healthcare[J]. Advances in Computers, 2018, 111: 1-41. |
[11] |
CHRISTIDIS K, DEVETSIKIOTIS M. Blockchains and smart contracts for the internet of things[J]. IEEE Access, 2016, 4: 2292-2303.
DOI URL |
[12] | BAHGA A, MADISETTI V K. Blockchain platform for industrial Internet of things[J]. Journal of Software Engineering and Applications, 2016, 9(10): 14. |
[13] |
KSHETRI N. Can blockchain strengthen the Internet of things?[J]. IT Professional, 2017, 19(4): 68-72.
DOI URL |
[14] | SZABO N. Smart contracts[EB/OL]. (1994-06-10)[2022-01-16]. http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html. |
[15] | DWORK C, NAOR M. Pricing via processing or combatting junk mail[C]// LNCS 740: Proceedings of the 12th Annual International Cryptology Conference Advances in Cryptology, Santa Barbara, Aug 16-20, 1992. Berlin, Heidelberg: Springer, 1993: 139-147. |
[16] | WOOD G. Ethereum: a secure decentralised generalised transaction ledger[R]. 2014. |
[17] | MOHANTA B K, PANDA S S, JENA D. An overview of smart contract and use cases in blockchain technology[C]// Proceedings of the 9th International Conference on Computing, Communication and Networking Technologies, Bengaluru, Jul 10-12, 2018. Piscataway: IEEE, 2018: 1-4. |
[18] | BUTERIN V. A next-generation smart contract and decen-tralized application platform[R]. 2014. |
[19] | ZHENG Z, XIE S, DAI H, et al. An overview of blockchain technology: architecture, consensus, and future trends[C]// Proceedings of the 2017 IEEE International Congress on Big Data, Honolulu, Jun 25-30, 2017. Washington: IEEE Computer Society, 2017: 557-564. |
[20] |
MACRINICI D, CARTOFEANU C, GAO S. Smart contract applications within blockchain technology: a systematic mapping study[J]. Telematics and Informatics, 2018, 35(8): 2337-2354.
DOI URL |
[21] | 徐蜜雪, 苑超, 王永娟, 等. 拟态区块链——区块链安全解决方案[J]. 软件学报, 2019, 30(6): 1681-1691. |
XU M X, YUAN C, WANG Y J, et al. Mimic blockchain—solution to the security of blockchain[J]. Journal of Software, 2019, 30(6): 1681-1691. | |
[22] | TheDAO[EB/OL]. [2022-01-16]. https://en.wikipedia.org/wiki/ TheDAO(organization). |
[23] | Beauty chain integer overflow[EB/OL]. [2022-01-16]. https://etherscan.io/token/0xc5d105e63711398af9bbff092d4b6769c8-2f793d. |
[24] | King of the Ether Throne[EB/OL]. [2022-01-16]. https://www.kingoftheether.com/thrones/kingoftheether/index.html. |
[25] | 韩璇, 袁勇, 王飞跃. 区块链安全问题:研究现状与展望[J]. 自动化学报, 2019, 45(1): 206-225. |
HAN X, YUAN Y, WANG F Y. Blockchain security issues: research status and prospects[J]. Acta Automatica Sinica, 2019, 45(1): 206-225. | |
[26] | ATZEI N, BARTOLETTI M, CIMOLI T. A survey of attacks on ethereum smart contracts (SoK)[C]// LNCS 10204: Proc-eedings of the 6th International Conference on Principles of Security & Trust, Uppsala, Apr 22-29, 2017. Cham: Springer, 2017: 164-186. |
[27] | GROSSMAN S, ABRAHAM I, GOLAN-GUETA G, et al. Online detection of effectively callback free objects with applications to smart contracts[J]. Proceedings of the ACM on Programming Languages, 2017, 2: 1-28. |
[28] | SafeMath[EB/OL]. [2022-01-16]. https://docs.statechannels.org/contractapi/natspec/SafeMath. |
[29] |
赵伟, 张问银, 王九如, 等. 基于符号执行的智能合约漏洞检测方案[J]. 计算机应用, 2020, 40(4): 947-953.
DOI |
ZHAO W, ZHANG W Y, WANG J R, et al. Smart contract vulnerability detection scheme based on symbol execution[J]. Journal of Computer Applications, 2020, 40(4): 947-953.
DOI |
|
[30] | 倪远东, 张超, 殷婷婷. 智能合约安全漏洞研究综述[J]. 信息安全学报, 2020, 5(3): 78-99. |
NI Y D, ZHANG C, YIN T T. A survey of smart contract vulnerability research[J]. Journal of Cyber Security, 2020, 5(3): 78-99. | |
[31] | 王化群, 张帆, 李甜, 等. 智能合约中的安全与隐私保护技术[J]. 南京邮电大学学报(自然科学版), 2019, 39(4): 63-71. |
WANG H Q, ZHANG F, LI T, et al. Security and privacy-protection technologies in smart contract[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2019, 39(4): 63-71. | |
[32] | Validator ordering and randomness in PoS[EB/OL]. [2022-01-16]. https://vitalik.ca/files/randomness.html. |
[33] | 郑忠斌, 王朝栋, 蔡佳浩. 智能合约的安全研究现状与检测方法分析综述[J]. 信息安全与通信保密, 2020(7): 93-105. |
ZHENG Z B, WANG C D, CAI J H. Analysis of the current status of smart contract security research and detection methods[J]. Information Security and Communications Privacy, 2020(7): 93-105. | |
[34] |
付梦琳, 吴礼发, 洪征, 等. 智能合约安全漏洞挖掘技术研究[J]. 计算机应用, 2019, 39(7): 1959-1966.
DOI |
FU M L, WU L F, HONG Z, et al. Research on vulnerability mining technique for smart contracts[J]. Journal of Computer Applications, 2019, 39(7): 1959-1966.
DOI |
|
[35] | CHANG X, ZHU J, ZHAO S. Dynamic array double-access attack in Ethereum[C]// Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications, Chengdu, Dec 11-14, 2020. Piscataway: IEEE, 2020: 1065-1071. |
[36] | 欧阳恒一, 熊焰, 黄文超. 一种代币智能合约的形式化建模与验证方法[J]. 计算机工程, 2020, 46(10): 41-45. |
OUYANG H Y, XIONG Y, HUANG W C. A formal modeling and verification method for token smart contract[J]. Computer Engineering, 2020, 46(10): 41-45. | |
[37] |
SHACHAM H, WATERS B. Compact proofs of retrievability[J]. Journal of Cryptology, 2013, 26(3): 442-483.
DOI URL |
[38] | DAN B, LYNN B, SHACHAM H. Short signatures from the Weil pairing[C]// LNCS 2248: Proceedings of the 7th International Conference on the Theory and Application of Cryptology and Information Security, Gold Coast, Dec 9-13, 2001. Berlin, Heidelberg: Springer, 2001: 514-532. |
[39] | KALRA S, GOEL S, DHAWAN M, et al. ZEUS: analyzing safety of smart contracts[C]// Proceedings of the 25th Annual Network and Distributed System Security Symposium, San Diego, Feb 18-21, 2018: 1-15. |
[40] |
SAYEED S, MARCO-GISBERT H, CAIRA T. Smart contract: attacks and protections[J]. IEEE Access, 2020, 8: 24416-24427.
DOI URL |
[41] | HIRAI Y. Formal verification of deed contract in Ethereum name service[EB/OL]. [2022-01-16]. https//yoichihirai.com/deed.pdf. |
[42] | HIRAI Y. Defining the Ethereum virtual machine for interactive theorem provers[C]// LNCS 10323:Proceedings of the Financial Cryptography and Data Security, Sliema, Apr 7, 2017. Cham: Springer, 2017: 520-535. |
[43] | GRISHCHENKO I, MAFFEI M, SCHNEIDEWIND C. A semantic framework for the security analysis of Ethereum smart contracts[C]// LNCS 10804: Proceedings of the 7th International Conference, Held as Part of the European Joint Conferences on Theory and Practice of Software,Thessaloniki, Apr 14-20, 2018. Cham: Springer, 2018: 243-269. |
[44] | HILDENBRANDT E, SAXENA M, RODRIGUES N, et al. KEVM: a complete formal semantics of the ethereum virtual machine[C]// Proceedings of the 31st IEEE Computer Security Foundations Symposium, Oxford, Jul 9-12, 2018. Washington: IEEE Computer Society, 2018: 204-217. |
[45] | 董春燕, 谭良. 基于CPN模型Auction智能合约的形式化验证[J]. 小型微型计算机系统, 2020, 41(11): 2292-2297. |
DONG C Y, TAN L. Formal verification of Auction smart contract based on CPN model[J]. Journal of Chinese Computer Systems, 2020, 41(11): 2292-2297. | |
[46] | LUU L, CHU D H, OLICKEL H, et al. Making smart contracts smarter[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Oct 24-28, 2016. New York: ACM, 2016: 254-269. |
[47] | MUELLER B. Mythril-reversing and bug hunting framework for the Ethereum blockchain[EB/OL]. [2022-01-16]. https://pypi.org/project/mythril/0.8.2/. |
[48] | MythX: smart contract security tool for Ethereum[EB/OL]. (2019-10-24)[2022-01-16]. https://mythx.io/. |
[49] | 李宗鸿, 胡大裟, 蒋玉明. 面向智能合约漏洞检测的改进符号执行研究[J]. 计算机应用研究, 2021, 38(7): 1943-1946. |
LI Z H, HU D S, JIANG Y M. Research on improved symbolic execution for smart contract vulnerability detection[J]. Application Research of Computers, 2021, 38(7): 1943-1946. | |
[50] | JIANG B, LIU Y, CHAN W K. ContractFuzzer: fuzzing smart contracts for vulnerability detection[C]// Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, Montpellier, Sep 3-7, 2018. New York: ACM, 2018: 259-269. |
[51] | LIAO J W, TSAI T T, HE C K, et al. SoliAudit: smart contract vulnerability assessment based on machine learning and fuzz testing[C]// Proceedings of the 6th International Conference on Internet of Things:Systems, Management and Security,Granada, Oct 22-25, 2019. Piscataway: IEEE, 2019: 458-465. |
[52] |
ASHRAF I, MA X, JIANG B, et al. GasFuzzer: fuzzing Ethereum smart contract binaries to expose gas-oriented exception security vulnerabilities[J]. IEEE Access, 2020, 8:99552-99564.
DOI URL |
[53] | XIONG Y, SU C, HUANG W, et al. SmartVerif: push the limit of automation capability of verifying security protocols by dynamic strategies[C]// Proceedings of the 29th USENIX Security Symposium, Aug 12-14, 2020. Berkeley: USENIX Association, 2020: 253-270. |
[54] | XING C, CHEN Z, CHEN L, et al. A new scheme of vulnerability analysis in smart contract with machine learning[J]. Wireless Networks, 2020. |
[55] | MOMENI P, WANG Y, SAMAVI R. Machine learning model for smart contracts security analysis[C]// Proceedings of the 17th International Conference on Privacy, Security and Trust, Fredericton, Aug 26-28, 2019. Piscataway: IEEE, 2019: 1-6. |
[56] | LIU Z G, QIAN P, WANG X Y, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection[J]. arXiv: 2107.11598, 2021. |
[57] | ZHUANG Y, LIU Z G, QIAN P, et al. Smart contract vulnerability detection using graph neural network[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Jul 2020: 3283-3290. |
[58] | TANN J W, XING J H, GUPTA S S, et al. Towards safer smart contracts: a sequence learning approach to detecting vulnerabilities[J]. arXiv:1811.06632, 2018. |
[59] | ZHOU Y, KUMAR D, BAKSHI S, et al. Erays: reverse engineering Ethereum’s opaque smart contracts[C]// Proceedings of the 27th USENIX Security Symposium, Baltimore, Aug 15-17, 2018. Berkeley: USENIX Association, 2018: 1371-1385. |
[60] | 韩松明, 梁彬, 黄建军, 等. DC-Hunter: 一种基于字节码匹配的危险智能合约检测方案[J]. 信息安全学报, 2020, 5(3): 100-112. |
HAN S M, LIANG B, HUANG J J, et al. DC-Hunter: detecting dangerous smart contracts via bytecode matching[J]. Journal of Cyber Security, 2020, 5(3): 100-112. | |
[61] | FEIST J, GREICO G, GROCE A. Slither: a static analysis framework for smart contracts[C]// Proceedings of the 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain, Montreal, May 27, 2019. Pis-cataway: IEEE, 2019: 8-15. |
[62] | GAO J B, LIU H, LIU C, et al. EASYFLOW: keep Ethereum away from overflow[C]// Proceedings of the 41st International Conference on Software Engineering:Companion Proceedings, Montreal, May 25-31, 2019. Piscataway: IEEE, 2019: 23-26. |
[63] | TIKHOMIROV S, VOSKRESENSKAYA E, IVANITSKIY I, et al. SmartCheck: static analysis of ethereum smart contracts[C]// Proceedings of the 1st IEEE/ACM International Workshop on Emerging Trends in Software Engineering for Blockchain, Gothenburg, May 27-Jun 3, 2018. New York: ACM, 2018: 9-16. |
[1] | LIU Tonglai, ZHANG Zikai, WU Jigang. System Model and Access Control Schemes for Medical Image Collaborative Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1779-1791. |
[2] | WANG Qun, LI Fujuan, NI Xueli, XIA Lingling, WANG Zhenli, LIANG Guangjun. Survey on Blockchain Consensus Algorithms and Application [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1214-1242. |
[3] | XIONG Xiao, LI Leixiao, GAO Jing, GAO Haoyu, DU Jinze, ZHENG Yue, NIU Tieming. Research Progress of Blockchain in Internet of Vehicles Data Sharing [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1008-1024. |
[4] | HAN Gang, LYU Yingze, LUO Wei, WANG Jiaqian. Privacy Data Protection Scheme for Patients with Major Outbreaks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 359-371. |
[5] | XU Yangyang, WANG Yan. Research on Blockchain in Cloud Manufacturing Resource Allocation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2298-2309. |
[6] | MENG Bo, WANG Yibing, ZHAO Can, WANG Dejun, MA Binhao. Survey on Cross-Chain Protocols of Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2177-2192. |
[7] | WANG Zhe, REN Yi, ZHOU Kai, GUAN Jianbo, TAN Yusong. Operation System Vulnerabilities Analysis Based on Code Clone Detection [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1619-1631. |
[8] | ZHANG Mingjun, YANG Sihua, YAO Bing. Exploring Relationship Between Traditional Lattices and Graph Lattices of Topological Coding [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2171-2183. |
[9] | FAN Xing, NIU Baoning. BBF: Bloom Filter Variant for Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1921-1929. |
[10] | SUN Yan, JI Weifeng, WENG Jiang. Selection of Defensive Optimal Strategy for Moving Target Signal Game [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1510-1520. |
[11] | GU Jianan, ZHENG Beilei, WENG Chuliang. Survey on Protection Mechanisms for Untrusted Hypervisor in Cloud [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 200-214. |
[12] | ZHOU Jian, SUN Liyan, FU Ming. Research on Wallet Protection Against Currency Failure in Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2039-2049. |
[13] | ZHENG Lianghan, HE Heng, TONG Qian, YANG Xiang, CHEN Xiang. Multi-authority Access Control Scheme in Cloud Environment [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1865-1878. |
[14] | WANG Qun, LI Fujuan, WANG Zhenli, LIANG Guangjun, XU Jie. Principle and Core Technology of Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1621-1643. |
[15] | LI Bin, JIANG Jianguo. Minority Decision: More Secure Voting Mechanism for Distributed Consistency Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1693-1701. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/