Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (3): 529-540.DOI: 10.3778/j.issn.1673-9418.2106117
• Surveys and Frontiers • Previous Articles Next Articles
WU Kaijun1, HUANG Tao1,+(), WANG Dicong1,2, BAI Chenshuai1, TAO Xiaomiao1
Received:
2021-06-21
Revised:
2021-08-18
Online:
2022-03-01
Published:
2021-08-19
About author:
WU Kaijun, born in 1978, Ph.D., professor, Ph.D. supervisor. His research interests include video detection and nonlinear dynamics of neurons.Supported by:
邬开俊1, 黄涛1,+(), 王迪聪1,2, 白晨帅1, 陶小苗1
通讯作者:
+ E-mail: 1479987020@qq.com作者简介:
邬开俊(1978—),男,山东莒南人,博士,教授,博士生导师,主要研究方向为视频检测与神经元的非线性动力学。基金资助:
CLC Number:
WU Kaijun, HUANG Tao, WANG Dicong, BAI Chenshuai, TAO Xiaomiao. Research Progress of Video Anomaly Detection Technology[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 529-540.
邬开俊, 黄涛, 王迪聪, 白晨帅, 陶小苗. 视频异常检测技术研究进展[J]. 计算机科学与探索, 2022, 16(3): 529-540.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2106117
数据集 | 帧数 | 标签 | 分辨率 | 异常事件 |
---|---|---|---|---|
UCSD Ped1 | 14 000 | 时间和空间 | 238×158 | 汽车、骑自行车等 |
UCSD Ped2 | 4 560 | 时间和空间 | 360×240 | 汽车、骑自行车等 |
UMN Lawn | 1 450 | 时间 | 320×240 | 人群逃生 |
UMN Indoor | 4 415 | 时间 | 320×240 | 人群逃生 |
UMN Plaza | 2 145 | 时间 | 320×240 | 人群逃生 |
CUHK Avenue | 30 652 | 时间和空间 | 640×360 | 跑、扔纸、扔书包等 |
Subway Entrance | 72 401 | 时间 | 512×384 | 逃票、徘徊 |
Subway Exit | 136 524 | 时间 | 512×384 | 逃票、徘徊 |
Shanghai-Tech | 317 398 | 时间和空间 | 856×480 | 追逐、突然移动等 |
UCF-Crime | 大约13.8×106 | 视频级和时间 | 320×240 | 逮捕、纵火、攻击等 |
Table 1 Comparison of anomaly detection datasets
数据集 | 帧数 | 标签 | 分辨率 | 异常事件 |
---|---|---|---|---|
UCSD Ped1 | 14 000 | 时间和空间 | 238×158 | 汽车、骑自行车等 |
UCSD Ped2 | 4 560 | 时间和空间 | 360×240 | 汽车、骑自行车等 |
UMN Lawn | 1 450 | 时间 | 320×240 | 人群逃生 |
UMN Indoor | 4 415 | 时间 | 320×240 | 人群逃生 |
UMN Plaza | 2 145 | 时间 | 320×240 | 人群逃生 |
CUHK Avenue | 30 652 | 时间和空间 | 640×360 | 跑、扔纸、扔书包等 |
Subway Entrance | 72 401 | 时间 | 512×384 | 逃票、徘徊 |
Subway Exit | 136 524 | 时间 | 512×384 | 逃票、徘徊 |
Shanghai-Tech | 317 398 | 时间和空间 | 856×480 | 追逐、突然移动等 |
UCF-Crime | 大约13.8×106 | 视频级和时间 | 320×240 | 逮捕、纵火、攻击等 |
模型 | 监督方式 | 数据集 | 是否端到端 | 方法描述 | AUC/% | |||
---|---|---|---|---|---|---|---|---|
C | U1 | U2 | S | |||||
DSTCNN[ | 监督 | UCSD | 否 | 深度时空卷积神经网络(DSTCNN)提取动作特征并输出正、异常分类概率 | — | 99.7 | 99.9 | — |
LDA-Net[ | 监督 | UCSD | 否 | YOLO提取的前景人体作为 3D CNN的输入提取行为的时空特征进而分类正、异常行为 | — | — | 97.9 | — |
IBL[ | 半监督 | Shanghai-Tech | 否 | 多实例学习 (MIL)定义一种IBL损失来约束弱监督问题的函数空间 | — | — | — | 82.5 |
GCN-Anomaly[ | 半监督 | UCSD+Shanghai-Tech | 是 | 图卷积网络校正噪声标签 | — | — | 93.2 | 84.4 |
AR-Net[ | 半监督 | Shanghai-Tech | 否 | 异常回归网络(AR-Net)的框架学习视频级弱监督下的区分特征 | — | — | — | 91.2 |
App+motion cues[ | 半监督 | UCSD | 否 | 使用“cut-bin”区分异常运动,使用SVDD外观检测 | — | 85.0 | 90.0 | — |
Conv-AE[ | 无监督 | CUHK Avenue+UCSD+Shanghai-Tech | 是 | 全卷积自编码器学习运动特征 | 70.2 | 81.0 | 90.0 | 60.9 |
ConvLSTM-AE[ | 无监督 | CUHK Avenue | 是 | ConvLSTM-AE框架来检测外观和外观(运动)的变化 | 77.0 | — | — | — |
Sparse coding[ | 无监督 | CUHK Avenue+UCSD+Shanghai-Tech | 是 | 将稀疏编码和循环神经网络结合 | 81.7 | — | 92.2 | 68.0 |
Future frame[ | 无监督 | CUHK Avenue+UCSD+Shanghai-Tech | 是 | 采用U-Net来预测下一帧 | 85.1 | 83.1 | 95.4 | 72.8 |
Memory-augmented AE[ | 无监督 | CUHK Avenue+UCSD+Shanghai-Tech | 是 | 内存增强自编码器(MemAE)查询检索与重构最相关的内存项 | 83.3 | — | 94.1 | 71.2 |
MNAD[ | 无监督 | CUHK Avenue+Shanghai-Tech | 是 | 存储模块记录正常数据的模式 | 88.5 | — | — | 70.5 |
MLEP[ | 无监督 | CUHK Avenue+Shanghai-Tech | 是 | ConvLSTM编码时空信息 | 92.8 | — | — | 76.8 |
Unmasking[ | 无监督 | CUHK Avenue | 否 | 对滑窗内部的前后两部分进行人为分类 | 80.6 | — | — | — |
Appearance-cGAN[ | 无监督 | CUHK Avenue+UCSD | 是 | 两个子网络Conv-AE解决图像结构问题,U-Net解决运动模式的问题 | 86.9 | — | 96.2 | — |
Online-GNG[ | 无监督 | UCSD | 是 | GNG 将不同样本映射到不同聚类实现端到端的聚类 | — | 93.8 | 94.0 | — |
Prediction reconstruction[ | 无监督 | CUHK Avenue+UCSD | 是 | 两个U-Net:一个以帧预测的形式工作,另一个尝试重建前一个网络生成的帧 | 83.7 | 82.6 | 96.2 | — |
Compact features[ | 无监督 | UCSD | 否 | 输入帧分成可变大小的单元结构,提取多重特征并输入多个判别模型进行检测 | — | 82.0 | 84.0 | — |
Plug and play CNN[ | 无监督 | UCSD | 是 | FCN网络作为预训练模型 | — | 95.7 | 88.4 | — |
Siamese distance learning[ | 无监督 | CUHK Avenue+UCSD | 否 | 孪生卷积神经网络学习一对视频时空区域之间的距离函数 | 87.2 | 86.0 | 94.0 | — |
Table 2 Comparison of algorithm effect
模型 | 监督方式 | 数据集 | 是否端到端 | 方法描述 | AUC/% | |||
---|---|---|---|---|---|---|---|---|
C | U1 | U2 | S | |||||
DSTCNN[ | 监督 | UCSD | 否 | 深度时空卷积神经网络(DSTCNN)提取动作特征并输出正、异常分类概率 | — | 99.7 | 99.9 | — |
LDA-Net[ | 监督 | UCSD | 否 | YOLO提取的前景人体作为 3D CNN的输入提取行为的时空特征进而分类正、异常行为 | — | — | 97.9 | — |
IBL[ | 半监督 | Shanghai-Tech | 否 | 多实例学习 (MIL)定义一种IBL损失来约束弱监督问题的函数空间 | — | — | — | 82.5 |
GCN-Anomaly[ | 半监督 | UCSD+Shanghai-Tech | 是 | 图卷积网络校正噪声标签 | — | — | 93.2 | 84.4 |
AR-Net[ | 半监督 | Shanghai-Tech | 否 | 异常回归网络(AR-Net)的框架学习视频级弱监督下的区分特征 | — | — | — | 91.2 |
App+motion cues[ | 半监督 | UCSD | 否 | 使用“cut-bin”区分异常运动,使用SVDD外观检测 | — | 85.0 | 90.0 | — |
Conv-AE[ | 无监督 | CUHK Avenue+UCSD+Shanghai-Tech | 是 | 全卷积自编码器学习运动特征 | 70.2 | 81.0 | 90.0 | 60.9 |
ConvLSTM-AE[ | 无监督 | CUHK Avenue | 是 | ConvLSTM-AE框架来检测外观和外观(运动)的变化 | 77.0 | — | — | — |
Sparse coding[ | 无监督 | CUHK Avenue+UCSD+Shanghai-Tech | 是 | 将稀疏编码和循环神经网络结合 | 81.7 | — | 92.2 | 68.0 |
Future frame[ | 无监督 | CUHK Avenue+UCSD+Shanghai-Tech | 是 | 采用U-Net来预测下一帧 | 85.1 | 83.1 | 95.4 | 72.8 |
Memory-augmented AE[ | 无监督 | CUHK Avenue+UCSD+Shanghai-Tech | 是 | 内存增强自编码器(MemAE)查询检索与重构最相关的内存项 | 83.3 | — | 94.1 | 71.2 |
MNAD[ | 无监督 | CUHK Avenue+Shanghai-Tech | 是 | 存储模块记录正常数据的模式 | 88.5 | — | — | 70.5 |
MLEP[ | 无监督 | CUHK Avenue+Shanghai-Tech | 是 | ConvLSTM编码时空信息 | 92.8 | — | — | 76.8 |
Unmasking[ | 无监督 | CUHK Avenue | 否 | 对滑窗内部的前后两部分进行人为分类 | 80.6 | — | — | — |
Appearance-cGAN[ | 无监督 | CUHK Avenue+UCSD | 是 | 两个子网络Conv-AE解决图像结构问题,U-Net解决运动模式的问题 | 86.9 | — | 96.2 | — |
Online-GNG[ | 无监督 | UCSD | 是 | GNG 将不同样本映射到不同聚类实现端到端的聚类 | — | 93.8 | 94.0 | — |
Prediction reconstruction[ | 无监督 | CUHK Avenue+UCSD | 是 | 两个U-Net:一个以帧预测的形式工作,另一个尝试重建前一个网络生成的帧 | 83.7 | 82.6 | 96.2 | — |
Compact features[ | 无监督 | UCSD | 否 | 输入帧分成可变大小的单元结构,提取多重特征并输入多个判别模型进行检测 | — | 82.0 | 84.0 | — |
Plug and play CNN[ | 无监督 | UCSD | 是 | FCN网络作为预训练模型 | — | 95.7 | 88.4 | — |
Siamese distance learning[ | 无监督 | CUHK Avenue+UCSD | 否 | 孪生卷积神经网络学习一对视频时空区域之间的距离函数 | 87.2 | 86.0 | 94.0 | — |
[1] |
GRUBBS F E. Procedures for detecting outlying observations in samples[J]. Technometrics, 1969, 11(1): 1-21.
DOI URL |
[2] | MA X X, WU J, XUE S, et al. A comprehensive survey on graph anomaly detection with deep learning[J]. arXiv:2106.07178, 2021. |
[3] | SUAREZ J J P, NAVAL JR P C. A survey on deep learning techniques for video anomaly detection[J]. arXiv:2009.14146, 2020. |
[4] | BULUSU S, KAILKHURA B, LI B, et al. Anomalous instance detection in deep learning: a survey[J]. arXiv:2003.06979, 2020. |
[5] | PANG G, SHEN C, CAO L, et al. Deep learning for anomaly detection: a review[J]. arXiv:2007.02500, 2020. |
[6] | 王志国, 章毓晋. 监控视频异常检测: 综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529. |
WANG G Z, ZHANG Y J. Anomaly detection in surveillance videos: a survey[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(6): 518-529. | |
[7] | 彭嘉丽, 赵英亮, 王黎明. 基于深度学习的视频异常行为检测研究[J]. 激光与光电子学进展, 2021, 58(6): 43-53. |
PENG J L, ZHAO Y L, WANG L M. Research on video abnormal behavior detection based on deep learning[J]. Laser & Optoelectronics Progress, 2021, 58(6): 43-53. | |
[8] | CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: a survey[J]. ACM Computing Surveys, 2009, 41(3): 1-58. |
[9] | 张乐. 深度神经网络视频异常目标检测与定位算法研究[D]. 秦皇岛: 燕山大学, 2019. |
ZHANG L. Anomaly detection and localization in video surveillance by deep neural network[D]. Qinghuangdao: Yanshan University, 2019. | |
[10] |
ZHOU S F, SHEN W, ZENG D, et al. Spatial-temporal convolutional neural networks for anomaly detection and localization in crowded scenes[J]. Signal Processing Image Communication, 2016, 47: 358-368.
DOI URL |
[11] |
SABOKROU M, FAYYAZ M, FATHY M, et al. Deep-Cascade: cascading 3D deep neural networks for fast anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1992-2004.
DOI URL |
[12] | LIU K, MA H D. Exploring background-bias for anomaly detection in surveillance videos[C]// Proceedings of the 27th ACM International Conference on Multimedia, Nice, Oct 21-25, 2019. New York: ACM, 2019: 1490-1499. |
[13] | LANDI F, LANDI F, CUCCHIARA R. Anomaly locality in video surveillance[J]. arXiv:1901.10364, 2019. |
[14] | CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? a new model and the kinetics dataset[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4724-4733. |
[15] | HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 733-742. |
[16] |
GU X X, CUI J R, ZHU Q. Abnormal crowd behavior detection by using the particle entropy[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(14): 3428-3433.
DOI URL |
[17] | ANDRADE E L, BLUNSDEN S, FISHER R B. Modelling crowd scenes for event detection[C]// Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, Aug 20-24, 2006. Washington: IEEE Computer Society, 2006: 175-178. |
[18] | MAHADEVAN V, LI W X, BHALODIA V, et al. Anomaly detection in crowded scenes[C]// Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer Society, 2010: 1975-1981. |
[19] | MARKOVITZ A, SHARIR G, FRIEDMAN I, et al. Graph embedded pose clustering for anomaly detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10536-10544. |
[20] | RAMACHANDRA B, JONES M J, VATSAVAI R R. Learning a distance function with a Siamese network to localize anomalies in videos[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 2587-2596. |
[21] | CHANG Y P, TU Z G, XIE W, et al. Clustering driven deep autoencoder for video anomaly detection[C]// LNCS 12360: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 329-345. |
[22] | ZAHEER M Z, MAHMOOD A, ASTRID M, et al. CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection[C]// LNCS 12367: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 358-376. |
[23] | SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 6479-6488. |
[24] | ZHU Y, NEWSAM S. Motion-aware feature for improved video anomaly detection[J]. arXiv:1907.10211, 2019. |
[25] | WAN B Y, FANG Y M, XIA X, et al. Weakly supervised video anomaly detection via center-guided discriminative learning[C]// Proceedings of the 2020 IEEE International Conference on Multimedia and Expo, Jul 6-10, 2020. Piscataway: IEEE, 2020: 1-6. |
[26] | LIU W, LUO W X, LI Z X, et al. Margin learning embedded prediction for video anomaly detection with a few anomalies[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 3023-3030. |
[27] | ZHONG J X, LI N N, KONG W J, et al. Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1237-1246. |
[28] |
ZAHEER M Z, MAHMOOD A, SHIN H, et al. A self-reasoning framework for anomaly detection using video-level labels[J]. IEEE Signal Processing Letters, 2020, 27: 1705-1709.
DOI URL |
[29] | GONG D, LIU L Q, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1705-1714. |
[30] | IONESCU R T, KHAN F S, GEORGESCU M I, et al. Object-centric auto-encoders and dummy anomalies for abnormal event detection in video[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7842-7851. |
[31] | NGUYEN T N, MEUNIER J. Anomaly detection in video sequence with appearance-motion correspondence[C]// Proceed-ings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1273-1283. |
[32] | LIU W, LUO W X, LIAN D Z, et al. Future frame prediction for anomaly detection—a new baseline[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscat- away: IEEE, 2018: 6536-6545. |
[33] | RAVANBAKHSH M, SANGINETO E, NABI M, et al. Training adversarial discriminators for cross-channel abnormal event detection in crowds[C]// Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, Jan 7-11, 2019. Piscataway: IEEE, 2019: 1896-1904. |
[34] | VU H, NGUYEN T D, LE T, et al. Robust anomaly detection in videos using multilevel representations[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5216-5223. |
[35] | ZAHEER M Z, LEE J H, ASTRID M, et al. Old is gold: redefining the adversarially learned one-class classifier training paradigm[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 14171-14181. |
[36] | XIA Y D, ZHANG Y, LIU F Z, et al. Synthesize then compare: detecting failures and anomalies for semantic segmentation[C]// LNCS 12346: Proceedings of the 16th European Confer-ence on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 145-161. |
[37] | SABOKROU M, KHALOOEI M, FATHY M, et al. Adver-sarially learned one-class classifier for novelty detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,Jun 18-23, 2018. Piscataway: IEEE, 2018: 3379-3388. |
[38] | LUO W X, LIU W, GAO S H. A revisit of sparse coding based anomaly detection in stacked RNN framework[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 341-349. |
[39] | LU Y W, YU F, REDDY M K K, et al. Few-shot scene-adaptive anomaly detection[C]// LNCS 12350: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 125-141. |
[40] | RODRIGUES R, BHARGAVA N, VELMURUGAN R, et al. Multi-timescale trajectory prediction for abnormal human activity detection[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 2615-2623. |
[41] | MORAIS R, LE V, TRAN T, et al. Learning regularity in skeleton trajectories for anomaly detection in videos[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 11996-12004. |
[42] | PANG G S, YAN C, SHEN C H, et al. Self-trained deep ordinal regression for end-to-end video anomaly detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 12170-12179. |
[43] | DOSHI K, YILMAZ Y. Continual learning for anomaly detection in surveillance videos[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1025-1034. |
[44] | ILG E, MAYER N, SAIKIA T, et al. Flownet 2.0: evolution of optical flow estimation with deep networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1647-1655. |
[45] | REDMON J, DIVVALA S K, GIRSHICK R B, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788. |
[46] | LU C W, SHI J P, JIA J Y. Abnormal event detection at 150 fps in matlab[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington: IEEE Computer Society, 2013: 2720-2727. |
[47] |
ADAM A, RIVLIN E, SHIMSHONI I, et al. Robust real-time unusual event detection using multiple fixed-location monitors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 555-560.
DOI URL |
[48] |
SABOKROU M, FAYYAZ M, FATHY M, et al. Deep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenes[J]. Computer Vision and Image Understanding, 2018, 172: 88-97.
DOI URL |
[49] | University of Minnesota. UMN[EB/OL]. [2020-08-18]. http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi. |
[50] |
LI W X, MAHADEVAN V, VASCONCELOS N. Anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 18-32.
DOI URL |
[51] | DEL GIORNO A, BAGNELL J A, HEBERT M. A discrim-inative framework for anomaly detection in large videos[C]// LNCS 9909: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 334-349. |
[52] | IONESCU R T, SMEUREANU S, ALEXE B, et al. Unmasking the abnormal events in video[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2914-2922. |
[53] | HU X M, CHEN Q, YANG L, et al. Abnormal crowd behavior detection and localization based on deep spatial-temporal convolutional neural network[J]. Application Research of Computers, 2020, 37(3): 891-895. |
[54] |
GONG M G, ZENG H, XIE Y, et al. Local distinguishability aggrandizing network for human anomaly detection[J]. Neural Networks, 2020, 122: 364-373.
DOI URL |
[55] | ZHANG J G, QING L Y, MIAO J. Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection[C]// Proceedings of the 2019 IEEE International Conference on Image Processing, Taiwan, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 4030-4034. |
[56] | ZHANG Y, LU H C, ZHANG L H, et al. Combining motion and appearance cues for anomaly detection[J]. Pattern Recogni-tion, 2016, 51: 443-452. |
[57] | LUO W X, LIU W, GAO S H. Remembering history with convolutional LSTM for anomaly detection[C]// Proceedings of the 2017 IEEE International Conference on Multimedia and Expo, Hong Kong, China, Jul 10-14, 2017. Washington:IEEE Computer Society, 2017: 439-444. |
[58] | PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 14360-14369. |
[59] |
SUN Q R, LIU H, HARADA T. Online growing neural gas for anomaly detection in changing surveillance scenes[J]. Pattern Recognition, 2017, 64: 187-201.
DOI URL |
[60] | TANG Y, ZHAO L, ZHANG S S, et al. Integrating prediction and reconstruction for anomaly detection[J]. Pattern Recogni-tion Letters, 2020, 129: 123-130. |
[61] |
LEYVA R, SANCHEZ V, LI C T. Video anomaly detection with compact feature sets for online performance[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3463-3478.
DOI URL |
[62] | RAVANBAKHSH M, NABI M, MOUSAVI H, et al. Plug-and-Play CNN for crowd motion analysis: an application in abnormal event detection[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Washington: IEEE Computer Society, 2018: 1689-1698. |
[63] |
AKHTAR N, MIAN A. Threat of adversarial attacks on deep learning in computer vision: a survey[J]. IEEE Access, 2018, 6: 14410-14430.
DOI URL |
[64] | SHARMA Y, LE T D, ALZANTOT M. CAAD 2018: generating transferable adversarial examples[J]. arXiv:1810.01268, 2018. |
[1] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[2] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[3] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[4] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[5] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[6] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[7] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[8] | ZHU Zhuangzhuang, ZHOU Zhiping. Detection of Health Data Based on Gaussian Mixture Generative Model [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1128-1135. |
[9] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[10] | ZHONG Mengyuan, JIANG Lin. Review of Super-Resolution Image Reconstruction Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990. |
[11] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[12] | XU Jia, WEI Tingting, YU Ge, HUANG Xinyue, LYU Pin. Review of Question Difficulty Evaluation Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 734-759. |
[13] | ZHU Weijie, CHEN Ying. Micro-expression Recognition Convolutional Network for Dual-stream Temporal-Domain Information Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 950-958. |
[14] | ZHANG Quangui, HU Jiayan, WANG Li. One Class Collaborative Filtering Recommendation Algorithm Coupled with User Common Characteristics [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 637-648. |
[15] | LIU Liping, SUN Jian, GAO Shiyan. Overview of Blind Deblurring Methods for Single Image [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 552-564. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/