Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (3): 637-648.DOI: 10.3778/j.issn.1673-9418.2009011
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Quangui+(), HU Jiayan, WANG Li
Received:
2020-09-07
Revised:
2020-11-06
Online:
2022-03-01
Published:
2020-11-19
About author:
ZHANG Quangui, born in 1978, Ph.D., associate professor, member of CCF. His research interests include deep learning and recommendation system.Supported by:
通讯作者:
+ E-mail: zhqgui@126.com作者简介:
张全贵(1978—),男,河北秦皇岛人,博士,副教授,CCF会员,主要研究方向为深度学习、推荐系统。基金资助:
CLC Number:
ZHANG Quangui, HU Jiayan, WANG Li. One Class Collaborative Filtering Recommendation Algorithm Coupled with User Common Characteristics[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 637-648.
张全贵, 胡嘉燕, 王丽. 耦合用户公共特征的单类协同过滤推荐算法[J]. 计算机科学与探索, 2022, 16(3): 637-648.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2009011
符号 | 说明 |
---|---|
| 用户集 |
| 项目集 |
| 用户集 |
| 项目集 |
| 用户 |
| 项目 |
| 向量 |
| 向量 |
| 全连接层的权值矩阵 |
| 第 |
| 当前用户 |
| 训练/测试数据集的第 |
| 测试数据集的第 |
Table 1 Mathematical notations
符号 | 说明 |
---|---|
| 用户集 |
| 项目集 |
| 用户集 |
| 项目集 |
| 用户 |
| 项目 |
| 向量 |
| 向量 |
| 全连接层的权值矩阵 |
| 第 |
| 当前用户 |
| 训练/测试数据集的第 |
| 测试数据集的第 |
数据集 | 用户 | 项目 | 交互 |
---|---|---|---|
MovieLens 100K | 943 | 1 682 | 100 000 |
MovieLens 1M | 6 040 | 3 592 | 1 000 209 |
MyAnimeList | 9 130 | 14 478 | 2 945 242 |
Table 2 Statistics of datasets
数据集 | 用户 | 项目 | 交互 |
---|---|---|---|
MovieLens 100K | 943 | 1 682 | 100 000 |
MovieLens 1M | 6 040 | 3 592 | 1 000 209 |
MyAnimeList | 9 130 | 14 478 | 2 945 242 |
类别 | 可见的特性 |
---|---|
用户 | 性别、年龄、职业、邮编 |
项目 | 标题类型 |
Table 3 Explicit features of users and items
类别 | 可见的特性 |
---|---|
用户 | 性别、年龄、职业、邮编 |
项目 | 标题类型 |
测试参数 | 测试参数具体值 |
---|---|
嵌入层的维度 | {8,16,32,64,128,256} |
最后隐藏层维度 | {8,16,32,64,128,256} |
学习率 | {0.000 1,0.000 5,0.001 0,0.003 0,0.005 0,0.010 0} |
批处理大小 | {128,256,512,1 024} |
用户邻居数量 | {10,20,30,40,50,100} |
Table 4 Test hyper-parameters
测试参数 | 测试参数具体值 |
---|---|
嵌入层的维度 | {8,16,32,64,128,256} |
最后隐藏层维度 | {8,16,32,64,128,256} |
学习率 | {0.000 1,0.000 5,0.001 0,0.003 0,0.005 0,0.010 0} |
批处理大小 | {128,256,512,1 024} |
用户邻居数量 | {10,20,30,40,50,100} |
数据集 | 时长/s | itemKNN | Wide&Deep | NeuMF | NGCF | DeepICF | UCC-OCCF-COS | UCC-OCCF-HAM | UCC-OCCF-Pear |
---|---|---|---|---|---|---|---|---|---|
MovieLens 100K | 训练(epoch) | 12.3 | 24.5 | 13.1 | 14.4 | 20.3 | 25.7 | 20.6 | 28.6 |
训练总时长 | 293.4 | 575.8 | 510.6 | 432.6 | 512.4 | 421.3 | 389.6 | 458.6 | |
预测总时长 | 1.5 | 2.0 | 1.6 | 3.9 | 2.0 | 2.1 | 1.9 | 2.3 | |
MovieLens 1M | 训练(epoch) | 125.1 | 325.1 | 208.1 | 805.5 | 308.6 | 425.3 | 456.2 | 430.0 |
训练总时长 | 3 481.7 | 6 502.5 | 4 994.4 | 19 332.2 | 6 058.6 | 4 379.5 | 4 453.6 | 4 620.3 | |
预测总时长 | 11.6 | 18.6 | 11.3 | 21.6 | 13.0 | 15.6 | 20.0 | 17.3 | |
MyAnimeList | 训练(epoch) | 389.4 | 653.4 | 442.9 | 1 970.1 | 555.2 | 582.4 | 568.4 | 545.9 |
训练总时长 | 10 903.2 | 11 454.4 | 8 035.1 | 43 342.2 | 12 510.6 | 3 510.8 | 3 814.4 | 2 183.6 | |
预测总时长 | 12.5 | 12.5 | 13.9 | 37.9 | 20.1 | 18.8 | 17.8 | 15.3 |
Table 5 Time for training and prediction
数据集 | 时长/s | itemKNN | Wide&Deep | NeuMF | NGCF | DeepICF | UCC-OCCF-COS | UCC-OCCF-HAM | UCC-OCCF-Pear |
---|---|---|---|---|---|---|---|---|---|
MovieLens 100K | 训练(epoch) | 12.3 | 24.5 | 13.1 | 14.4 | 20.3 | 25.7 | 20.6 | 28.6 |
训练总时长 | 293.4 | 575.8 | 510.6 | 432.6 | 512.4 | 421.3 | 389.6 | 458.6 | |
预测总时长 | 1.5 | 2.0 | 1.6 | 3.9 | 2.0 | 2.1 | 1.9 | 2.3 | |
MovieLens 1M | 训练(epoch) | 125.1 | 325.1 | 208.1 | 805.5 | 308.6 | 425.3 | 456.2 | 430.0 |
训练总时长 | 3 481.7 | 6 502.5 | 4 994.4 | 19 332.2 | 6 058.6 | 4 379.5 | 4 453.6 | 4 620.3 | |
预测总时长 | 11.6 | 18.6 | 11.3 | 21.6 | 13.0 | 15.6 | 20.0 | 17.3 | |
MyAnimeList | 训练(epoch) | 389.4 | 653.4 | 442.9 | 1 970.1 | 555.2 | 582.4 | 568.4 | 545.9 |
训练总时长 | 10 903.2 | 11 454.4 | 8 035.1 | 43 342.2 | 12 510.6 | 3 510.8 | 3 814.4 | 2 183.6 | |
预测总时长 | 12.5 | 12.5 | 13.9 | 37.9 | 20.1 | 18.8 | 17.8 | 15.3 |
超参数 | MovieLens 100K | MovieLens 1M | MyAnimeList |
---|---|---|---|
嵌入层的维度 | 8 | 64 | 64 |
最后隐藏层维度 | 8 | 256 | 256 |
学习率 | 0.000 5 | 0.001 0 | 0.000 1 |
批处理大小 | 256 | 256 | 512 |
Table 6 Hyper-parameters
超参数 | MovieLens 100K | MovieLens 1M | MyAnimeList |
---|---|---|---|
嵌入层的维度 | 8 | 64 | 64 |
最后隐藏层维度 | 8 | 256 | 256 |
学习率 | 0.000 5 | 0.001 0 | 0.000 1 |
批处理大小 | 256 | 256 | 512 |
[1] | KOREN Y, BELL R M, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. |
[2] |
PAN W K, CHEN L. Group Bayesian personalized ranking with rich interactions for one-class collaborative filtering[J]. Neurocomputing, 2016, 207: 501-510.
DOI URL |
[3] | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[J]. arXiv:1205.2618, 2012. |
[4] |
ZHOU W, LI J, ZHOU Y, et al. Bayesian pairwise learning to rank via one-class collaborative filtering[J]. Neurocomputing, 2019, 367: 176-187.
DOI URL |
[5] | 俞春花, 刘学军, 李斌. 隐式反馈场景中融合社交信息的上下文感知推荐[J]. 计算机科学, 2016, 43(6): 248-253. |
YU C H, LIU X J, LI B. Implicit feedback personalized recommendation model fusing context-aware and social network process[J]. Computer Science, 2016, 43(6): 248-253. | |
[6] |
YAO W L, HE J, HUANG G Y, et al. A graph-based model for context-aware recommendation using implicit feedback data[J]. World Wide Web, 2015, 18(5): 1351-1371.
DOI URL |
[7] | PAN R, ZHOU Y H, CAO B, et al. One-class collaborative filtering[C]// Proceedings of the 8th IEEE International Conference on Data Mining, Pisa, Dec 15-19, 2008. Washington: IEEE Computer Society, 2008: 502-511. |
[8] | PAN W K, YANG Q, CAI W L, et al. Transfer to rank for heterogeneous one-class collaborative filtering[J]. ACM Transactions on Information Systems, 2019, 37(1): 1-20. |
[9] |
JAVED F, HAYAT M. Predicting subcellular localization of multi-label proteins by incorporating the sequence features into Chou’s PseAAC[J]. Genomics, 2019, 111(6): 1325-1332.
DOI URL |
[10] | CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, Sep 15, 2016. New York: ACM, 2016: 7-10. |
[11] | GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction[J]. arXiv:1703.04247, 2017. |
[12] |
BAG S, KUMAR S K, TIWARI M K. An efficient recommendation generation using relevant Jaccard similarity[J]. Information Sciences, 2019, 483: 53-64.
DOI URL |
[13] | HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 173-182. |
[14] | WANG N Y, YEUNG D Y. Learning a deep compact image representation for visual tracking[C]// Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 809-817. |
[15] | KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[J]. arXiv:1404. 2188, 2014. |
[16] | VAN DEN OORD A, DIELEMAN S, SCHRAUWEN B. Deep content-based music recommendation[C]// Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2643-2651. |
[17] |
MIRBAKHSH N, LING C X. Leveraging clustering to improve collaborative filtering[J]. Information Systems Frontiers, 2018, 20(1): 111-124.
DOI URL |
[18] | SIDANA S, TROFIMOV M, HORODNITSKII O, et al. Representation learning and pairwise ranking for implicit feedback in recommendation systems[J]. arXiv:1705.00105, 2017. |
[19] | ELKAHKY A M, SONG Y, HE X D. A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]// Proceedings of the 24th International Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 278-288. |
[20] | SEDHAIN S, BUI H H, KAWALE J, et al. Practical linear models for large-scale one-class collaborative filtering[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 3854-3860. |
[21] | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[C]// Proceedings of the 1st International Conference on Learning Representations, Scottsdale, May 2-4, 2013: 1301-3781. |
[22] | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 3111-3119. |
[23] |
WANG C, DONG X J, ZHOU F, et al. Coupled attribute similarity learning on categorical data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(4): 781-797.
DOI URL |
[24] |
LIU M S, PAN W K, LIU M, et al. Mixed similarity learning for recommendation with implicit feedback[J]. Knowledge Based Systems, 2017, 119: 178-185.
DOI URL |
[25] | HARPER F M, KONSTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2016, 5(4): 1-19. |
[26] | SARWAR B M, KARYPIS G, KONSTAN J A, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International World Wide Web Conference, Hong Kong, China, May 1-5, 2001. New York: ACM, 2001: 285-295. |
[27] | WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 165-174. |
[28] | XUE F, HE X N, WANG X, et al. Deep item-based collaborative filtering for top-N recommendation[J]. ACM Transactions on Information Systems, 2019, 37(3): 1-25. |
[29] | HE X N, ZHANG H W, KAN M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Jul 17-21, 2016. New York: ACM, 2016: 549-558. |
[30] | BAYER I, HE X N, KANAGAL B, et al. A generic coordinate descent framework for learning from implicit feedback[C]// Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 1341-1350. |
[31] | KOREN Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Aug 24-27, 2008. New York: ACM, 2008: 426-434. |
[32] | HE X N, CHEN T, KAN M Y, et al. TriRank: review-aware explainable recommendation by modeling aspects[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 19-23, 2015. New York: ACM, 2015: 1661-1670. |
[33] |
SAKIB N, AHMAD R B, HARUNA K. A collaborative approach toward scientific paper recommendation using citation context[J]. IEEE Access, 2020, 8: 51246-51255.
DOI URL |
[1] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[2] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[3] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[4] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[5] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[6] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[7] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[8] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[9] | ZHONG Mengyuan, JIANG Lin. Review of Super-Resolution Image Reconstruction Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990. |
[10] | XU Jia, WEI Tingting, YU Ge, HUANG Xinyue, LYU Pin. Review of Question Difficulty Evaluation Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 734-759. |
[11] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[12] | ZHU Weijie, CHEN Ying. Micro-expression Recognition Convolutional Network for Dual-stream Temporal-Domain Information Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 950-958. |
[13] | JIANG Yi, XU Jiajie, LIU Xu, ZHU Junwu. Research on Edge-Guided Image Repair Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 669-682. |
[14] | LIU Ying, GUO Yingying, FANG Jie, FAN Jiulun, HAO Yu, LIU Jiming. Survey of Research on Deep Learning Image-Text Cross-Modal Retrieval [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 489-511. |
[15] | MA Jinlin, ZHANG Yu, MA Ziping, MAO Kaiji. Research Progress of Lightweight Neural Network Convolution Design [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 512-528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/