Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (7): 1506-1525.DOI: 10.3778/j.issn.1673-9418.2210056
• Frontiers·Surveys • Previous Articles Next Articles
WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen
Online:
2023-07-01
Published:
2023-07-01
吴水秀,罗贤增,熊键,钟茂生,王明文
WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen. Review on Research of Knowledge Tracking[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1506-1525.
吴水秀, 罗贤增, 熊键, 钟茂生, 王明文. 知识追踪研究综述[J]. 计算机科学与探索, 2023, 17(7): 1506-1525.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2210056
[1] DARADOUMIS T, BASSI R, XHAFA F, et al. A review on massive e-learning (MOOC) design, delivery and assess-ment[C]//Proceedings of the 8th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Compiegne, Oct 28-30, 2013. Piscataway: IEEE, 2013: 208-213. [2] ADAMOPOULOS P. What makes a great MOOC? An inter-disciplinary analysis of student retention in online courses[C]//Proceedings of the 2013 International Conference on Information Systems, Milano, Dec 15-18, 2013: 4720-4740. [3] CORBETT A T, ANDERSON J R. Knowledge tracing: mo-deling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1995, 4(4): 253-278. [4] EMBRETSON S E, REISE S P. Item response theory[M]. Bris-tol: Taylor & Francis, 2013. [5] CEN H. Generalized learning factors analysis: improving cog-nitive models with machine learning[D]. Carnegie Mellon University, 2009. [6] PAVLIK P I, CEN H, KOEDINGER K R. Performance fac-tors analysis—a new alternative to knowledge tracing[J]. Frontiers in Artificial Intelligence and Applications, 2009, 200(1): 531-538. [7] PIECH C, SPENCER J, HUANG J, et al. Deep knowledge tracing[J]. arXiv:1506.05908, 2015. [8] PANDEY S, KARYPIS G. A self-attentive model for know-ledge tracing[C]//Proceedings of the 12th International Con-ference on Educational Data Mining, Montréal, Jul 2-5, 2019: 1-4. [9] CHOI Y, LEE Y, CHO J, et al. Towards an appropriate query, key, and value computation for knowledge tracing[C]//Pro-ceedings of the 7th ACM Conference on Learning@Scale, Aug 12-14, 2020. New York: ACM, 2020: 341-344. [10] PU S, YUDELSON M, OU L, et al. Deep knowledge tracing with transformers[C]//LNCS 12164: Proceedings of the 21st International Conference on Artificial Intelligence in Education, Ifrane, Jul 6-10, 2020. Cham: Springer, 2020: 252-256. [11] NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3101-3107. [12] CHENG S, LIU Q, CHEN E H. Domain adaption for know-ledge tracing[J]. arXiv:2001.04841, 2020. [13] GAN W B, SUN Y, PENG X, et al. Modeling learner’s dyna-mic knowledge construction procedure and cognitive item difficulty for knowledge tracing[J]. Applied Intelligence, 2020, 50(11): 3894-3912. [14] WILSON K H, XIONG X L, KHAJAH M, et al. Estimating student proficiency: deep learning is not the panacea[C]//Proceedings of the 30th Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2016: 1-8. [15] DOLECK T, LEMAY D J, BASNET R B, et al. Predictive analytics in education: a comparison of deep learning frame-works[J]. Education and Information Technologies, 2020, 25(3): 1951-1963. [16] ZHU Z T, SHEN D M. New paradigm of educational techno-logy research based on big data[J]. E-education Research, 2013, 10: 5-13. [17] WEISS D J, KINGSBURY G G. Application of computeri-zed adaptive testing to educational problems[J]. Journal of Educational Measurement, 1984, 21(4): 361-375. [18] LEARNING K A. Building the world’s most powerful education recommendation engine[R]. 2012: 1-15. [19] GREEN-LERMAN H. Visualizing personalized learning[EB/OL]. [2022-07-28]. https://www.knewton.com/resources/blog/adaptive-learning/visualizing-personalized-learning. [20] LIU Y P, LIU Q, WU R Z, et al. Collaborative learning team formation: a cognitive modeling perspective[C]//LNCS 9643: Proceedings of the 21st International Conference on Database Systems for Advanced Applications, Dallas, Apr 16-19, 2016. Cham: Springer, 2016: 383-400. [21] HUANG Z, LIU Q, ZHAI C, et al. Exploring multi-objective exercise recommendations in online education systems[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1261-1270. [22] 朱天宇. 结合认知诊断的方法的学生建模与应用研究 [D]. 合肥: 中国科学技术大学, 2018. ZHU T Y. Student modeling and application research com-bined with cognitive diagnostic methods[D]. Hefei: Univer-sity of Science and Technology of China, 2018. [23] LEIGHTON J P, GIERL M J. Cognitive diagnostic assess-ment for education: theory and applications[M]. New York:Cambridge University Press, 2007. [24] REISE S P. Item response theory[M]//The Encyclopedia of Clinical Psychology. Hoboken: John Wiley & Sons, Ltd., 2014: 1-10. [25] JUNKER B W, SIJTSMA K. Cognitive assessment models with few assumptions, and connections with nonparametric item response theory[J]. Applied Psychological Measure-ment, 2001, 25(3): 258-272. [26] DIBELLO L V, ROUSSOS L A, STOUT W. Review of cogni-tively diagnostic assessment and a summary of psychome-tric models[J].?Handbook of Statistics, 2006, 26: 979-1030. [27] TATSUOKA K K. Rule space: an approach for dealing with misconceptions based on item response theory[J]. Journal of Educational Measurement, 1983, 20(4): 345-354. [28] XIAO Z, RUXUE S. Research advance in DINA model of cognitive diagnosis[J]. China Examinations, 2013, 1: 32-37. [29] ZHANG K, YAO Y. A three learning states Bayesian know-ledge tracing model[J]. Knowledge-Based Systems, 2018, 148: 189-201. [30] ZHU J, ZANG Y, QIU H, et al. Integrating temporal infor-mation into knowledge tracing: a temporal difference app-roach[J]. IEEE Access, 2018, 6: 27302-27312. [31] HUANG X Q, LIU Q, WANG C, et al. Constructing educa-tional concept maps with multiple relationships from multi-source data[C]//Proceedings of the 2019 IEEE International Conference on Data Mining, Beijing, Nov 8-11, 2019. Pisca-taway: IEEE, 2019: 1108-1113. [32] K?SER T, KLINGLER S, SCHWING A G, et al. Dynamic Bayesian networks for student modeling[J]. IEEE Transac-tions on Learning Technologies, 2017, 10(4): 450-462. [33] LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Con-ditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, Williams-town, Jun 28-Jul 1, 2001. San Mateo: Morgan Kaufmann, 2001: 282-289. [34] SCHWING A, HAZAN T, POLLEFEYS M, et al. Efficient structured prediction with latent variables for general graphical models[J]. arXiv:1206.6436, 2012. [35] XU Y B, MOSTOW J. Using logistic regression to trace multiple sub-skills in a dynamic Bayes net[C]//Proceedings of the 4th International Conference on Educational Data Mining, Eindhoven, Jul 6-8, 2011: 241-246. [36] HAWKINS W J, HEFFERNAN N T, BAKER R S J D. Learning Bayesian knowledge tracing parameters with a knowledge heuristic and empirical probabilities[C]//LNCS 8474: Proceedings of the 12th International Conference on Intelligent Tutoring Systems, Honolulu, Jun 5-9, 2014. Cham: Springer, 2014: 150-155. [37] YUDELSON M V, KOEDINGER K R, GORDON G J. Indi-vidualized Bayesian knowledge tracing models[C]//LNCS 7926: Proceedings of the 16th International Conference on Artificial Intelligence in Education, Memphis, Jul 9-13, 2013. Berlin, Heidelberg: Springer, 2013: 171-180. [38] BAKER R S J D, YACEF K. The state of educational data mining in 2009: a review and future visions[J]. Journal of Educational Data Mining, 2009, 1(1): 3-17. [39] PARDOS Z A, HEFFERNAN N T. KT-IDEM: introducing item difficulty to the knowledge tracing model[C]//Procee-dings of the 2011 International Conference on User Mode-ling, Adaptation, and Personalization, Jul 11-15, 2011. Berlin, Heidelberg: Springer, 2011: 243-254. [40] THAI-NGHE N, HORVáTH T, SCHMIDT-THIEME L. Factorization models for forecasting student performance[C]//Proceedings of the 4th International Conference on Educational Data Mining, Eindhoven, Jul 6-8, 2011: 11-20. [41] EBBINGHAUS H. Memory: a contribution to experimental psychology[J]. Annals of Neurosciences, 2013, 20(4): 155. [42] PELáNEK R. Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques[J]. User Modeling and User-Adapted Interaction, 2017, 27(3): 313-350. [43] CHI M, KOEDINGER K R, GORDON G J, et al. Instruc-tional factors analysis: a cognitive model for multiple instruc-tional interventions[C]//Proceedings of the 4th International Conference on Educational Data Mining, Eindhoven, Jul 6-8, 2011. [44] HUANG Y, GONZáLEZ-BRENES J, BRUSILOVSKY P. General features in knowledge tracing to model multiple sub-skills, temporal item response theory, and expert knowledge[C]//Proceedings of the 7th International Conference on Educational Data Mining, London, Jul 4-7, 2014: 84-91. [45] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum like-lihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Metho-dological), 1977, 39(1): 1-22. [46] GRAVES A, MOHAMED A, HINTON G. Speech recogni-tion with deep recurrent neural networks[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, May 26-31, 2013. Piscataway: IEEE, 2013: 6645-6649. [47] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012. [48] HU Z, ZHANG Z, YANG H, et al. A deep learning approach for predicting the quality of online health expert question-answering services[J]. Journal of Biomedical Informatics, 2017, 71: 241-253. [49] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: lessons learned from the 2015 MSCOCO image captioning challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(4): 652-663. [50] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489. [51] WILLIAMS R J, ZIPSER D. A learning algorithm for con-tinually running fully recurrent neural networks[J]. Neural Computation, 1989, 1(2): 270-280. [52] LIU D R, CHUANG S P, LEE H. Attention-based memory selection recurrent network for language modeling[J]. arXiv:1611.08656, 2016. [53] WESTON J, BORDES A, CHOPRA S, et al. Towards AI-complete question answering: a set of prerequisite toy tasks[J]. arXiv:1502.05698, 2015. [54] CANDES E J, WAKIN M B. An introduction to compres-sive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. [55] XIONG X L, ZHAO S Y, VAN INWEGEN E G, et al. Going deeper with deep knowledge tracing[C]//Proceedings of the 9th International Conference on Educational Data Mining, Raleigh, Jun 29-Jul 2, 2016: 545-550. [56] YEUNG C K, YEUNG D Y. Addressing two problems in deep knowledge tracing via prediction-consistent regulariza-tion[C]//Proceedings of the 5th Annual ACM Conference on Learning at Scale, London, Jun 26-28, 2018. New York: ACM, 2018: 1-10. [57] WANG T Q, MA F L, GAO J. Deep hierarchical knowledge tracing[C]//Proceedings of the 12th International Conference on Educational Data Mining, Montréal, Jul 2-5, 2019: 671-674. [58] HOCHREITER S, SCHMIDHUBER J. Long short-term me-mory[J]. Neural Computation, 1997, 9(8): 1735-1780. [59] ZHANG J N, SHI X J, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 765-774. [60] WESTON J, CHOPRA S, BORDES A. Memory networks[J]. arXiv:1410.3916, 2014. [61] SANTORO A, BARTUNOV S, BOTVINICK M M, et al. Meta-learning with memory-augmented neural networks[C]//Pro-ceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 1842-1850. [62] GRAVES A, WAYNE G, DANIHELKA I. Neural turing machines[J]. arXiv:1410.5401, 2014. [63] AI F Z, CHEN Y C, GUO Y C, et al. Concept-aware deep knowledge tracing and exercise recommendation in an online learning system[C]//Proceedings of the 12th International Conference on Educational Data Mining, Montréal, Jul 2-5, 2019: 1-6. [64] NAKAGAWA H, IWASAWA Y, MATSUO Y. Graph-based knowledge tracing: modeling student proficiency using graph neural network[C]//Proceedings of the 2019 IEEE/WIC/ACM International Conference on Web Intelligence, Thessaloniki, Oct 14-17, 2019. New York: ACM, 2019: 156-163. [65] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, Jul 31-Aug 4, 2005. Piscataway: IEEE, 2005: 729-734. [66] GARDNER M W, DORLING S R. Artificial neural net-works (the multilayer perceptron)—a review of applica-tions in the atmospheric sciences[J]. Atmospheric Environ-ment, 1998, 32(14/15): 2627-2636. [67] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555, 2014. [68] TONG H, WANG Z, LIU Q, et al. HGKT: introducing hierarchical exercise graph for knowledge tracing[J]. arXiv:2006.16915, 2020. [69] JOHNSON S C. Hierarchical clustering schemes[J]. Psycho-metrika, 1967, 32(3): 241-254. [70] SONG X, LI J, TANG Y, et al. JKT: a joint graph convo-lutional network based deep knowledge tracing[J]. Informa-tion Sciences, 2021, 580: 510-523. [71] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [72] DE BODT C, MULDERS D, VERLEYSEN M, et al. Non-linear dimensionality reduction with missing data using parametric multiple imputations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(4): 1166-1179. [73] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013. [74] SU Y, LIU Q W, LIU Q, et al. Exercise-enhanced sequential modeling for student performance prediction[C]//Procee-dings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 2435-2443. [75] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient esti-mation of word representations in vector space[J]. arXiv:1301.3781, 2013. [76] LIU Q, HUANG Z, YIN Y, et al. EKT: exercise-aware know-ledge tracing for student performance prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(1): 100-115. [77] LIU Y, YANG Y, CHEN X, et al. Improving knowledge tracing via pre-training question embeddings[J]. arXiv:2012.05031, 2020. [78] ZHANG M, ZHU X, ZHANG C, et al. Multi-factors aware dual-attentional knowledge tracing[C]//Proceedings of the 30th ACM International Conference on Information & Know-ledge Management, Queensland, Nov 1-5, 2021. New York:ACM, 2021: 2588-2597. [79] LIU Y, YANG Y, CHEN X, et al. Improving knowledge tra-cing via pre-training question embeddings[J]. arXiv:2012.05031, 2020. [80] YANG Y, SHEN J, QU Y, et al. GIKT: a graph-based interac-tion model for knowledge tracing[J]. arXiv:2009.05991, 2020. [81] PANDEY S, SRIVASTAVA J. RKT: relation-aware self-attention for knowledge tracing[C]//Proceedings of the 29th ACM International Conference on Information & Know-ledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 1205-1214. [82] ARORA S, LIANG Y Y, MA T Y. A simple but tough-to-beat baseline for sentence embeddings[C]//Proceedings of the 5th International Conference on Learning Representa-tions, Toulon, Apr 24-26, 2017. [83] PEARSON K. Contributions to the mathematical theory of evolution. III. regression, heredity, and panmixia[J]. Procee-dings of the Royal Society of London, 1895, 59(1): 69-71. [84] SHEN S, LIU Q, CHEN E, et al. Learning process-consistent knowledge tracing[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Singapore, Aug 14-18, 2021. New York: ACM, 2021: 1452-1460. [85] FRIEDL M A, BRODLEY C E. Decision tree classification of land cover from remotely sensed data[J]. Remote Sensing of Environment, 1997, 61(3): 399-409. [86] MINN S, YU Y, DESMARAIS M C, et al. Deep knowledge tracing and dynamic student classification for knowledge tracing[C]//Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, Nov 17-20, 2018. Washington: IEEE Computer Society, 2018: 1182-1187. [87] KRISHNA K, MURTY M N. Genetic K-means algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(3): 433-439. [88] SUN X, ZHAO X, LI B, et al. Dynamic key-value memory networks with rich features for knowledge tracing[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8239-8245. [89] EBBINGHAUS H. Memory: a contribution to experimental psychology[J]. Annals of Neurosciences, 2013, 20(4): 155. [90] NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3101-3107. [91] GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020. New York: ACM, 2020: 2330-2339. [92] LIU S, ZOU R, SUN J, et al. A hierarchical memory net-work for knowledge tracing[J]. Expert Systems with App-lications, 2021, 177: 114935. [93] KASURINEN J, NIKULA U. Estimating programming know-ledge with Bayesian knowledge tracing[J]. ACM SIGCSE Bulletin, 2009, 41(3): 313-317. [94] SCHODDE T, BERGMANN K, KOPP S. Adaptive robot language tutoring based on Bayesian knowledge tracing and predictive decision-making[C]//Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Inter-action, Vienna, Mar 6-9, 2017. New York: ACM, 2017: 128-136. [95] 姜智. 知识点关系、知识点结构图与知识点网络的应用研究[J]. 鞍山师范学院学报, 2005, 7(5): 99-101. JIANG Z. The application study of knowledge point relation and its structure diagram and knowledge network[J]. Journal of Anshan Normal University, 2005, 7(5): 99-101. [96] 谈成群. 知识组件与知识空间及其应用初探[D]. 湘潭: 湘潭大学, 2007. TAN C Q. Knowledge component and knowledge space and its application[D]. Xiangtan: Xiangtan University, 2007. [97] LIU D, DAI H, ZHANG Y, et al. Deep knowledge tracking based on attention mechanism for student performance prediction[C]//Proceedings of the 2020 IEEE 2nd Interna-tional Conference on Computer Science and Educational Informatization, Xinxiang, Jun 12-14, 2020. Piscataway: IEEE, 2020: 95-98. [98] YEUNG C K. Deep-IRT: make deep learning based know-ledge tracing explainable using item response theory[J]. arXiv:1904.11738, 2019. [99] LIU D, ZHANG Y, ZHANG J, et al. Multiple features fusion attention mechanism enhanced deep knowledge tracing for student performance prediction[J]. IEEE Access, 2020, 8: 194894-194903. [100] WILSON K H, XIONG X, KHAJAH M, et al. Estimating student proficiency: deep learning is not the panacea[C]//Advances in Neural Information Processing Systems 29, Barcelona, Dec 5-10, 2016: 3. [101] RESNICK M, MALONEY J, MONROY-HERNáNDEZ A, et al. Scratch: programming for all[J]. Communications of the ACM, 2009, 52(11): 60-67. [102] AIVALOGLOU E, HERMANS F, MORENO-LEóN J, et al. A dataset of scratch programs: scraped, shaped and scored[C]//Proceedings of the 2017 IEEE/ACM 14th In-ternational Conference on Mining Software Repositories, Buenos Aires, May 20-21, 2017. Piscataway: IEEE, 2017: 511-514. [103] NUSSEY I D, NORTON M L. An introduction to infor-mation and communication theory[J]. Production Engi-neer, 1975, 54(12): 647. [104] FEI M, YEUNG D Y. Temporal models for predicting student dropout in massive open online courses[C]//Pro-ceedings of the 2015 IEEE International Conference on Data Mining, Atlantic City, Nov 14-17, 2015. Washing-ton: IEEE Computer Society, 2015: 256-263. [105] ZIMMERMAN B J. Self-regulated learning and academic achievement: an overview[J]. Educational Psychologist, 1990, 25(1): 3-17. [106] HUANG Z, LIU Q, ZHAI C, et al. Exploring multi-objective exercise recommendations in online education systems[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1261-1270. |
[1] | XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792. |
[2] | JI Changqing, WANG Bingbing, QIN Jing, WANG Zumin. Survey of Deep Feature Instance Level Image Retrieval Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1565-1575. |
[3] | MA Yan, Gulimila·Kezierbieke. Research Review of Image Semantic Segmentation Method in High-Resolution Remote Sensing Image Interpretation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548. |
[4] | ZHANG Rulin, WANG Hailong, LIU Lin, PEI Dongmei. Survey of Research on Automatic Music Annotation and Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1225-1248. |
[5] | LIANG Hongtao, LIU Shuo, DU Junwei, HU Qiang, YU Xu. Review of Deep Learning Applied to Time Series Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300. |
[6] | CAO Yiqin, RAO Zhechu, ZHU Zhiliang, WAN Sui. Dual-channel Quaternion Convolutional Network for Denoising [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1359-1372. |
[7] | CAO Siming, WANG Xiaohua, WANG Hongkun, CAO Yi. MSV-Net: Visual Super-Resolution Reconstruction for Scientific Simulated Data of Mixed Surface-Volume [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1321-1328. |
[8] | LIU Jing, ZHAO Wei, DONG Zehao, WANG Shaohua, WANG Yu. Motor Imagery Signal Classification Based on Multi-scale Self-attentional Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1427-1440. |
[9] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
[10] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[11] | JIAO Lei, YUN Jing, LIU Limin, ZHENG Bofei, YUAN Jingshu. Overview of Closed-Domain Deep Learning Event Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548. |
[12] | ZHOU Yan, WEI Qinbin, LIAO Junwei, ZENG Fanzhi, FENG Wenjie, LIU Xiangyu, ZHOU Yuexia. Natural Scene Text Detection and End-to-End Recognition: Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 577-594. |
[13] | WANG Wensen, HUANG Fengrong, WANG Xu, LIU Qinglin, YI Boheng. Overview of Visual Inertial Odometry Technology Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 549-560. |
[14] | ZHOU Jingyu, WANG Shitong. Multi-source Online Transfer Learning Algorithm for Imbalanced Data [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 687-700. |
[15] | WANG Yan, LYU Yanping. Hybrid Deep CNN-Attention for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/