Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (9): 2047-2074.DOI: 10.3778/j.issn.1673-9418.2211113
• Frontiers·Surveys • Previous Articles Next Articles
ZHAO Tingting, SUN Wei, CHEN Yarui, WANG Yuan, YANG Jucheng
Online:
2023-09-01
Published:
2023-09-01
赵婷婷,孙威,陈亚瑞,王嫄,杨巨成
ZHAO Tingting, SUN Wei, CHEN Yarui, WANG Yuan, YANG Jucheng. Review of Deep Reinforcement Learning in Latent Space[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2047-2074.
赵婷婷, 孙威, 陈亚瑞, 王嫄, 杨巨成. 潜在空间中深度强化学习方法研究综述[J]. 计算机科学与探索, 2023, 17(9): 2047-2074.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2211113
[1] SUTTON R S, BARTO A G. Reinforcement learning: an in-troduction[M]. Cambridge: MIT Press, 2018. [2] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. [3] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 5. [4] SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay[J]. arXiv:1511.05952, 2015. [5] WANG Z, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 1995-2003. [6] KONDA V, TSITSIKLIS J. Actor-critic algorithms[C]//Ad-vances in Neural Information Processing Systems 12, Denver, Nov 29-Dec 4, 1999. Cambridge: MIT Press, 2000: 1008-1014. [7] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. arXiv:1509.02971, 2015. [8] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 1928-1937. [9] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv:1707.06347, 2017. [10] HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholmsm?ssan, Jul 10-15, 2018: 1861-1870. [11] ABDOOS M, BAZZAN A L C. Hierarchical traffic signal optimization using reinforcement learning and traffic pre-diction with long-short term memory[J]. Expert Systems with Applications, 2021, 171: 114580. [12] NOAEEN M, NAIK A, GOODMAN L, et al. Reinforcement learning in urban network traffic signal control: a systema-tic literature review[J]. Expert Systems with Applications, 2022: 116830. [13] 肖硕, 黄珍珍, 张国鹏, 等. 基于SAC的多智能体深度强化学习算法[J]. 电子学报, 2021, 49(9): 1675-1681. XIAO S, HUANG Z Z, ZHANG G P, et al. Deep reinforce-ment learning algorithm of multi-agent based on SAC[J]. Acta Electronica Sinica, 2021, 49(9): 1675-1681. [14] BRUNKE L, GREEFF M, HALL A W, et al. Safe learning in robotics: from learning-based control to safe reinforcement learning[J]. arXiv:2108.06266, 2021. [15] ZHAO W S, QUERALTA J P, WESTERLUND T. Sim-to-real transfer in deep reinforcement learning for robotics: a survey[C]//Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence, Canberra, Dec 1-4, 2020. Piscataway: IEEE, 2020: 737-744. [16] MIAO Y, BLUNSOM P, SPECIA L. A generative framework for simultaneous machine translation[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Nov 7-11, 2021. Menlo Park: AAAI, 2021: 6697-6706. [17] JADERBERG M, CZARNECKI W M, DUNNING I, et al.Human-level performance in 3D multiplayer games with population-based reinforcement learning[J]. Science, 2019, 364(6443): 859-865. [18] KIRAN B R, SOBH I, TALPAERT V, et al. Deep reinforce-ment learning for autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 4909-4926. [19] CHEN J, YUAN B, TOMIZUKA M. Model-free deep rein-forcement learning for urban autonomous driving[C]//Pro-ceedings of the 2019 IEEE Intelligent Transportation Systems Conference, Auckland, Oct 27-30, 2019. Piscataway: IEEE,2019: 2765-2771. [20] NI Z, PAUL S. A multistage game in smart grid security: a reinforcement learning solution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2684-2695. [21] 郭宪. 深入浅出强化学习: 原理入门[M]. 北京: 电子工业出版社, 2018. GUO X. Head first reinforcement learning: an introduction to the principles[M]. Beijing: Electronic Industry Press, 2018. [22] HESSEL M, MODAYIL J, VAN HASSELT H, et al. Rainbow: combining improvements in deep reinforcement learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 3215-3222. [23] VINYALS O, BABUSCHKIN I, CZARNECKI W M, et al. Grandmaster level in StarCraft II using multi-agent reinfor-cement learning[J]. Nature, 2019, 575(7782): 350-354. [24] BERNER C, BROCKMAN G, CHAN B, et al. Dota 2 with large scale deep reinforcement learning[J]. arXiv:1912.06680, 2019. [25] HEESS N, TB D, SRIRAM S, et al. Emergence of locomo-tion behaviours in rich environments[J]. arXiv:1707.02286, 2017. [26] PETERS J, SCHAAL S. Policy gradient methods for robo-tics[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, Oct 9-15, 2006. Piscataway: IEEE, 2006: 2219-2225. [27] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [28] SCHMIDHUBER J. Formal theory of creativity, fun, and intrinsic motivation (1990—2010)[J]. IEEE Transactions on Autonomous Mental Development, 2010, 2(3): 230-247. [29] CHANDAK Y, THEOCHAROUS G, KOSTAS J, et al. Learning action representations for reinforcement learning[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 941-950. [30] FRAN?OIS-LAVET V, BENGIO Y, PRECUP D, et al. Combined reinforcement learning via abstract representa-tions[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019: 3582-3589. [31] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. [32] HAFNER D, LILLICRAP T, FISCHER I, et al. Learning latent dynamics for planning from pixels[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 2555-2565. [33] GELADA C, KUMAR S, BUCKMAN J, et al. DeepMDP: learning continuous latent space models for representation learning[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 2170-2179. [34] ZHANG A, MCALLISTER R, CALANDRA R, et al. Lear-ning invariant representations for reinforcement learning without reconstruction[J]. arXiv:2006.10742, 2020. [35] TAGHANAKI S A, CHOI K, KHASAHMADI A H, et al. Robust representation learning via perceptual similarity metrics[C]//Proceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 10043-10053. [36] OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv:1807.03748, 2018. [37] DULAC-ARNOLD G, EVANS R, VAN HASSELT H, et al. Deep reinforcement learning in large discrete action spaces[J]. arXiv:1512.07679, 2015. [38] ZAHAVY T, HAROUSH M, MERLIS N, et al. Learn what not to learn: action elimination with deep reinforcement learning[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2018, Montréal, Dec 3-8, 2018: 3566-3577. [39] ZHAO T, WANG Y, SUN W, et al. Representation learning for continuous action spaces is beneficial for efficient policy learning[J]. Neural Networks, 2023, 159: 137-152. [40] HA D, SCHMIDHUBER J. World models[J]. arXiv:1803.10122, 2018. [41] HAFNER D, LILLICRAP T, BA J, et al. Dream to control: learning behaviors by latent imagination[J]. arXiv:1912.01603, 2019. [42] HAFNER D, LILLICRAP T, NOROUZI M, et al. Mastering Atari with discrete world models[J]. arXiv:2010.02193, 2020. [43] VAN OVERSCHEE P, DE MOOR B L. Subspace identification for linear systems: theory-implementation-applications[M]. Berlin, Heidelberg: Springer, 2012. [44] SHUMWAY R H, STOFFER D S. An approach to time series smoothing and forecasting using the EM algorithm[J]. Journal of Time Series Analysis, 1982, 3(4): 253-264. [45] GILES C L. Adaptive processing of sequences and data structures[M]. Berlin, Heidelberg: Springer, 1998. [46] BALAKRISHNAN V. System identification: theory for the user (second edition)[J]. Automatica, 2002, 38(2): 375-378. [47] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, Jul 2008. New York: ACM, 2008: 1096-1103. [48] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [49] GUTOSKI M, RIBEIRO M, AQUINO N M R, et al. A clus-tering-based deep autoencoder for one-class image classifi-cation[C]//Proceedings of the 2017 IEEE Latin American Conference on Computational Intelligence, Arequipa, Nov 8-10, 2017. Piscataway: IEEE, 2017: 1-6. [50] DAHL G E, YU D, DENG L, et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 20(1): 30-42. [51] BORDES A, GLOROT X, WESTON J, et al. Joint learning of words and meaning representations for open-text semantic parsing[C]//Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, La Palma, Apr 21-23, 2012: 127-135. [52] MNIH A, TEH Y W. A fast and simple algorithm for training neural probabilistic language models[J]. arXiv:1206.6426, 2012. [53] JOZEFOWICZ R, VINYALS O, SCHUSTER M, et al. Ex-ploring the limits of language modeling[J]. arXiv:1602.02410, 2016. [54] SABOKROU M, FATHY M, HOSEINI M. Video anomaly detection and localisation based on the sparsity and recons-truction error of auto-encoder[J]. Electronics Letters, 2016, 52(13): 1122-1124. [55] CHANG Y, TU Z, XIE W, et al. Clustering driven deep autoencoder for video anomaly detection[C]//LNCS 12360:Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 329-345. [56] LIU H, TANIGUCHI T. Feature extraction and pattern reco-gnition for human motion by a deep sparse autoencoder[C]//Proceedings of the 14th IEEE International Conference on Computer and Information Technology, Xi??an, Sep 11-13, 2014. Washington: IEEE Computer Society, 2014: 173-181. [57] LANGE S, RIEDMILLER M. Deep auto-encoder neural net-works in reinforcement learning[C]//Proceedings of the 2010 International Joint Conference on Neural Networks, Barcelona, Jul 18-23, 2010. Piscataway: IEEE, 2010: 1-8. [58] LANGE S, RIEDMILLER M, VOIGTL?NDER A. Autono-mous reinforcement learning on raw visual input data in a real world application[C]//Proceedings of the 2012 Interna-tional Joint Conference on Neural Networks, Brisbane, Jun 10-15, 2012. Piscataway: IEEE, 2012: 1-8. [59] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013. [60] DOERSCH C. Tutorial on variational autoencoders[J]. arXiv: 1606.05908, 2016. [61] 李耿增. 基于变分自编码器的图像压缩[D]. 北京: 北京邮电大学, 2021. LI G Z. Image compression based on variational self-encoder[D]. Beijing: Beijing University of Posts and Telecommuni-cations, 2021. [62] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012: 1106-1114. [63] LAGOUDAKIS M G, PARR R. Reinforcement learning as classification: leveraging modern classifiers[C]//Proceedings of the 20th International Conference on Machine Learning,Washington, Aug 21-24, 2003. Menlo Park: AAAI, 2003: 424-431. [64] CHANG L, TSAO D Y. The code for facial identity in the primate brain[J]. Cell, 2017, 169(6): 1013-1028. [65] QUIROGA R Q, REDDY L, KREIMAN G, et al. Invariant visual representation by single neurons in the human brain[J]. Nature, 2005, 435(7045): 1102-1107. [66] DEISENROTH M, RASMUSSEN C E. PILCO: a model-based and data-efficient approach to policy search[C]//Pro-ceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omnipress, 2011: 465-472. [67] GAL Y, MCALLISTER R, RASMUSSEN C E. Improving PILCO with Bayesian neural network dynamics models[C]//Proceedings of the 2016 Data-Efficient Machine Learning Workshop, New York, 2016. [68] AMOS B, DINH L, CABI S, et al. Learning awareness models[J]. arXiv:1804.06318, 2018. [69] CHUA K, CALANDRA R, MCALLISTER R, et al. Deep reinforcement learning in a handful of trials using probabi-listic dynamics models[C]//Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018: 4759-4770. [70] HENAFF M, WHITNEY W F, LECUN Y. Model-based plan-ning with discrete and continuous actions[J]. arXiv:1705.07177, 2017. [71] TASSA Y, EREZ T, TODOROV E. Synthesis and stabilization of complex behaviors through online trajectory optimization[C]//Proceedings of the 2012 IEEE/RSJ International Con-ference on Intelligent Robots and Systems, Vilamoura, Oct 7-12, 2012. Piscataway: IEEE, 2012: 4906-4913. [72] WANG T, BAO X, CLAVERA I, et al. Benchmarking model-based reinforcement learning[J]. arXiv:1907.02057, 2019. [73] 林景栋, 吴欣怡, 柴毅, 等. 卷积神经网络结构优化综述[J]. 自动化学报, 2020, 46(1): 24-37. LIN J D, WU X Y, CHAI Y, et al. Structure optimization of convolutional neural networks: a survey[J]. Acta Automa-tica Sinica , 2020, 46(1): 24-37. [74] LEE A X, NAGABANDI A, ABBEEL P, et al. Stochastic latent actor-critic: deep reinforcement learning with a latent variable model[C]//Advances in Neural Information Proces-sing Systems 33,?Dec?6-12,?2020: 741-752. [75] BELLEMARE M G, NADDAF Y, VENESS J, et al. The arcade learning environment: an evaluation platform for general agents[J]. Journal of Artificial Intelligence Research, 2013, 47: 253-279. [76] GIVAN R, DEAN T, GREIG M. Equivalence notions and model minimization in Markov decision processes[J]. Artificial Intelligence, 2003, 147(1/2): 163-223. [77] DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: an open urban driving simulator[C]//Proceedings of the 1st Annual Conference on Robot Learning, Mountain View, Nov 13-15, 2017: 1-16. [78] FERNS N, PANANGADEN P, PRECUP D. Bisimulation metrics for continuous Markov decision processes[J]. SIAM Journal on Computing, 2011, 40(6): 1662-1714. [79] TAYLOR J, PRECUP D, PANAGADEN P. Bounding per-formance loss in approximate MDP homomorphisms[C]//Advances in Neural Information Processing Systems 21, Vancouver, Dec 8-11, 2008. Red Hook: Curran Associates, 2009: 1649-1656. [80] HINDERER K. Lipschitz continuity of value functions in Markovian decision processes[J]. Mathematical Methods of Operations Research, 2005, 62: 3-22. [81] ASADI K, MISRA D, LITTMAN M. Lipschitz continuity in model-based reinforcement learning[C]//Proceedings of the 2018 International Conference on Machine Learning, Stockholm, 2018: 264-273. [82] HANSEN-ESTRUCH P, ZHANG A, NAIR A, et al. Bisi-mulation makes analogies in goal-conditioned reinforce-ment learning[C]//Proceedings of the 2022 International Conference on Machine Learning, Baltimore, Jul 17-23, 2022: 8407-8426. [83] LIU Q, ZHOU Q, YANG R, et al. Robust representation learning by clustering with bisimulation metrics for visual reinforcement learning with distractions[J]. arXiv:2302.12003, 2023. [84] LESORT T, DíAZ-RODRíGUEZ N, GOUDOU J F, et al. State representation learning for control: an overview[J]. Neural Networks, 2018, 108: 379-392. [85] HOUTHOOFT R, CHEN X, DUAN Y, et al. VIME: variational information maximizing exploration[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2016, Barcelona, Dec 5-10, 2016. Red Hook: Curran Asso-ciates, 2016: 1109-1117. [86] PATHAK D, AGRAWAL P, EFROS A A, et al. Curiosity-driven exploration by self-supervised prediction[C]//Procee-dings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 2778-2787. [87] TAO R Y, FRAN?OIS-LAVET V, PINEAU J. Novelty search in representational space for sample efficient exploration[C]//Advances in Neural Information Processing Systems 33, Dec?6-12,?2020: 8114-8126. [88] TISHBY N, PEREIRA F C, BIALEK W. The information bottleneck method[J]. arXiv:physics/0004057, 2000. [89] ALEMI A A, FISCHER I, DILLON J V, et al. Deep varia-tional information bottleneck[J]. arXiv:1612.00410, 2016. [90] ELIAS P. Predictive coding—I[J]. IRE Transactions on In-formation Theory, 1955, 1(1): 16-24. [91] ATAL B S, SCHROEDER M R. Adaptive predictive coding of speech signals[J]. Bell System Technical Journal, 1970, 49(8): 1973-1986. [92] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013. [93] WISKOTT L, SEJNOWSKI T J. Slow feature analysis: unsupervised learning of invariances[J]. Neural Computa-tion, 2002, 14(4): 715-770. [94] REN T, ZHANG T, LEE L, et al. Spectral decomposition re-presentation for reinforcement learning[J]. arXiv:2208.09515, 2022. [95] H?FTMANN M, ROBINE J, HARMELING S. Time-myopic go-explore: learning a state representation for the go-explore paradigm[J]. arXiv:2301.05635, 2023. [96] JIANG Z, XU D, LIANG J. A deep reinforcement learning framework for the financial portfolio management problem[J]. arXiv:1706.10059, 2017. [97] GLAVIC M, FONTENEAU R, ERNST D. Reinforcement learning for electric power system decision and control: past considerations and perspectives[J]. IFAC-PapersOnLine, 2017, 50(1): 6918-6927. [98] DULAC-ARNOLD G, DENOYER L, PREUX P, et al. Fast reinforcement learning with large action sets using error-correcting output codes for MDP factorization[C]//LNCS 7524: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases,Bristol, Sep 24-28, 2012: 180-194. [99] DIETTERICH T G, BAKIRI G. Solving multiclass learning problems via error-correcting output codes[J]. Journal of Artificial Intelligence Research, 1994, 2: 263-286. [100] EVEN-DAR E, MANNOR S, MANSOUR Y, et al. Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems[J]. Journal of Machine Learning Research, 2006, 7: 1079-1105. [101] WAHLSTR?M N, SCH?N T B, DEISENROTH M P. Lear-ning deep dynamical models from image pixels[J]. IFAC-PapersOnLine, 2015, 48(28): 1059-1064. [102] WATTER M, SPRINGENBERG J T, BOEDECKER J, et al. Embed to control: a locally linear latent dynamics model for control from raw images[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates,2015: 2746-2754. [103] BANIJAMALI E, SHU R, BUI H, et al. Robust locally-linear controllable embedding[C]//Proceedings of the 2018 International Conference on Artificial Intelligence and Sta-tistics, Playa Blanca, Apr 9-11, 2018: 1751-1759. [104] GRAVES A. Generating sequences with recurrent neural networks[J]. arXiv:1308.0850, 2013. [105] YE D, LIU Z, SUN M, et al. Mastering complex control in MOBA games with deep reinforcement learning[C]//Pro-ceedings of the 34th AAAI Conference on Artificial Intel-ligence, the 32nd Innovative Applications of Artificial In-telligence Conference, the 10th AAAI Symposium on Edu-cational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 6672-6679. [106] KENDALL A, HAWKE J, JANZ D, et al. Learning to drive in a day[C]//Proceedings of the 2019 International Conference on Robotics and Automation, Montreal, May 20-24, 2019. Piscataway: IEEE, 2019: 8248-8254. [107] SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]//Proceedings of the 31st International Conference on Machine Learning, Beijing, Jun 21-26, 2014: 387-395. [108] OPENAI. Introducing ChatGPT[EB/OL]. [2022-09-30]. https://openai.com/blog/chatgpt. [109] BAJPAI S. Application of deep reinforcement learning for Indian stock trading automation[J]. arXiv:2106.16088, 2021. [110] YU C, LIU J, NEMATI S, et al. Reinforcement learning in healthcare: a survey[J]. ACM Computing Surveys, 2021, 55(1): 1-36. |
[1] | CUI Ming, GONG Shengrong. Survey on Visual-Guided Adversarial Imitation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2075-2091. |
[2] | LIU Hualing, CHEN Shanghui, CAO Shijie, ZHU Jianliang, REN Qingqing. Survey of Fake News Detection with Multi-model Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029. |
[3] | XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792. |
[4] | HAN Xu, WU Feng. Offline Meta-Reinforcement Learning with Contrastive Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1917-1927. |
[5] | ZHANG Li, DUAN Mingda, WAN Jianxiong, LI Leixiao, LIU Chuyi. Research on Deep Reinforcement Learning Method for Throughput Optimization of Internet of Vehicles Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1708-1718. |
[6] | JI Changqing, WANG Bingbing, QIN Jing, WANG Zumin. Survey of Deep Feature Instance Level Image Retrieval Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1565-1575. |
[7] | WU Shuixiu, LUO Xianzeng, XIONG Jian, ZHONG Maosheng, WANG Mingwen. Review on Research of Knowledge Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1506-1525. |
[8] | MA Yan, Gulimila·Kezierbieke. Research Review of Image Semantic Segmentation Method in High-Resolution Remote Sensing Image Interpretation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548. |
[9] | ZHANG Rulin, WANG Hailong, LIU Lin, PEI Dongmei. Survey of Research on Automatic Music Annotation and Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1225-1248. |
[10] | LIANG Hongtao, LIU Shuo, DU Junwei, HU Qiang, YU Xu. Review of Deep Learning Applied to Time Series Prediction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300. |
[11] | CAO Siming, WANG Xiaohua, WANG Hongkun, CAO Yi. MSV-Net: Visual Super-Resolution Reconstruction for Scientific Simulated Data of Mixed Surface-Volume [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1321-1328. |
[12] | CAO Yiqin, RAO Zhechu, ZHU Zhiliang, WAN Sui. Dual-channel Quaternion Convolutional Network for Denoising [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1359-1372. |
[13] | LIU Jing, ZHAO Wei, DONG Zehao, WANG Shaohua, WANG Yu. Motor Imagery Signal Classification Based on Multi-scale Self-attentional Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1427-1440. |
[14] | HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825. |
[15] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/