Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (12): 3179-3201.DOI: 10.3778/j.issn.1673-9418.2504088

• Frontiers·Surveys • Previous Articles     Next Articles

Differential Privacy in Federated Learning: Challenges and Prospects

LIU Yi, JIANG Chengjie, YANG Songtao, ZHANG Lei, WU Shiwei   

  1. 1. School of Information and Electronic Technology, Jiamusi University, Jiamusi, Heilongjiang 154007, China 
    2. Heilongjiang Province Key Laboratory of Autonomous Intelligence and Information Processing, School of Information and Electronic Technology, Jiamusi University, Jiamusi, Heilongjiang 154007, China
    3. Jiamusi Key Laboratory of Satellite Navigation Technology and Equipment Engineering Technology, Jiamusi, Heilongjiang 154007, China
    4. School of Computer and Information Engineering, Bengbu University, Bengbu, Anhui 233000, China
  • Online:2025-12-01 Published:2025-12-01

联邦学习中的差分隐私现状:机遇与挑战

刘义,蒋澄杰,杨松涛,张磊,吴世伟   

  1. 1. 佳木斯大学 信息电子技术学院,黑龙江 佳木斯 154007 
    2. 佳木斯大学 信息电子技术学院 黑龙江省自主智能与信息处理重点实验室,黑龙江 佳木斯 154007
    3. 佳木斯市卫星导航技术与装备工程技术重点实验室,黑龙江 佳木斯 154007
    4. 蚌埠学院 计算机与信息工程学院,安徽 蚌埠 233000

Abstract: In federated learning, differential privacy serves as a key technology for addressing privacy concerns, yet it still faces multiple challenges in adapting to heterogeneous environments, personalized privacy design, and communication optimization. Focusing on the current research status of differential privacy in federated learning, this paper conducts an in-depth analysis around three typical application scenarios: differential privacy in heterogeneous environments, personalized differential privacy protection, and differential privacy-communication optimization mechanisms. Specifically, this paper explores the design ideas of differential privacy mechanisms under the conditions of statistical heterogeneity, device heterogeneity, and model heterogeneity respectively, and compares the technical paths and evolutionary trends of various methods in terms of perturbation strategies, budget allocation, and adaptation capabilities. On this basis, this paper further summarizes the performance of current differential privacy mechanisms in terms of computational efficiency, communication overhead, and model adaptability, concludes their advantages and disadvantages, and clarifies the applicable scenarios of different mechanisms through the comparison of typical algorithms. To more comprehensively evaluate the actual effects of these mechanisms, this paper also analyzes the impact of differential privacy strategies on model accuracy, communication rounds, and convergence speed in federated learning by combining experimental results, and reveals the trade-off relationship between privacy protection and utility improvement. Finally, based on the limitations of existing research, this paper prospects the joint optimization mechanisms of differential privacy in multi-dimensional heterogeneous and personalized scenarios.

Key words: federated learning, differential privacy, heterogeneous environments, personalized differential privacy, privacy-communication trade-off

摘要: 在联邦学习中,差分隐私是应对隐私问题的关键技术,但差分隐私在联邦学习的异构环境适应、个性化隐私设计及通信优化等方面仍面临诸多问题。针对联邦学习中差分隐私的研究现状,围绕三类典型应用场景——异构环境下的差分隐私、个性化差分隐私保护以及差分隐私-通信优化机制,展开深入分析。分别探讨统计异构、设备异构与模型异构条件下差分隐私机制的设计思路,比较各类方法在扰动策略、预算分配与适配能力等方面的技术路径及演化趋势。在此基础上,进一步总结当前差分隐私机制在计算效率、通信开销及模型适应性方面的性能表现,归纳其优势与不足,并通过典型算法对比明确不同机制的适用场景。为了更全面评估这些机制的实际效果,还结合实验结果分析差分隐私策略在联邦学习中对模型精度、通信轮次与收敛速度的影响,揭示其在保护隐私与提升效用之间的权衡关系。基于现有研究的不足,展望差分隐私在多维异构与个性化场景下的联合优化机制。

关键词: 联邦学习, 差分隐私, 异构环境, 个性化差分隐私, 隐私-通信权衡