
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (12): 3202-3223.DOI: 10.3778/j.issn.1673-9418.2412043
• Frontiers·Surveys • Previous Articles Next Articles
DENG Yi, XIE Wenbin, YIN Hong, ZHANG Jingjing, BAI Wei
Online:2025-12-01
Published:2025-12-01
邓毅,解文彬,殷宏,张京晶,白玮
DENG Yi, XIE Wenbin, YIN Hong, ZHANG Jingjing, BAI Wei. Review of 3D Information Extraction from Satellite Visible Light Imagery[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(12): 3202-3223.
邓毅, 解文彬, 殷宏, 张京晶, 白玮. 卫星可见光影像三维信息提取研究综述[J]. 计算机科学与探索, 2025, 19(12): 3202-3223.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2412043
| [1] 皮英冬, 王密, 王思恒, 等. 基于有理多项式模型的高分四号卫星可见光通道面阵成像载荷在轨几何定标[J]. 光学学报, 2023, 43(12): 321-329. PI Y D, WANG M, WANG S H, et al. On-orbit geometric calibration of panchromatic planar array sensor on GF4 satellite based on the rational polynomial coefficient model[J]. Acta Optica Sinica, 2023, 43(12): 321-329. [2] CHIKUGO H, ARAI K, PATHAK S, et al. Fisheye stereo camera using fisheye vertical stereo method[C]//Proceedings of the 2024 IEEE International Conference on Image Processing. Piscataway: IEEE, 2024: 3512-3518. [3] 柯力玮,杨久春,王佳琦,等. 无人机遥感下的东北薄层黑土区切沟三维形态时空演变分析[EB/OL]. 遥感学报[2024-12-15]. https://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20243429/. KE L W, YANG J C, WANG J Q, et al. Spatiotemporal analysis of gully three-dimensional morphological evolution in the northeast black soil region based on drone remote sensing[J]. National Remote Sensing Bulletin[2024-12-15]. https://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20243429/. [4] FOSTER K, CHRISTIE G, BROWN M. Urban semantic 3D dataset[EB/OL]. IEEE Dataport, 2020[2024-12-15]. https://dx.doi.org/10.21227/9frn-7208. [5] LI S H, HE S, JIANG S, et al. WHU-stereo: a challenging benchmark for stereo matching of high-resolution satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5603914. [6] WU T, VALLET B, PIERROT-DESEILLIGNY M, et al. A new stereo dense matching benchmark dataset for deep learning[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, XLIII-B2-2021: 405-412. [7] GAO J, LIU J, JI S P. Rational polynomial camera model warping for deep learning based satellite multi-view stereo matching[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 6128-6137. [8] NASA. Lunar reconnaissance orbiter camera (LROC) narrow angle camera (NAC) dataset[EB/OL]. [2024-12-15]. http: //lroc.sese.asu.edu. [9] PATIL S, COMANDUR B, PRAKASH T, et al. A new stereo benchmarking dataset for satellite images[EB/OL]. [2024-12-15]. https://arxiv.org/abs/1907.04404. [10] MARR D, POGGIO T. A computational theory of human stereo vision[J]. Proceedings of the Royal Society of London Series B Biological Sciences, 1979, 204(1156): 301-328. [11] LIU D Y, ZHANG J P, GUO Y L. Stereo matching algorithm for high-resolution remote sensing images based on sparse coding and dictionary learning[C]//Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2021: 4802-4805. [12] ZHAO L, LIU Y M, MEN C G, et al. Double propagation stereo matching for urban 3-D reconstruction from satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-17. [13] LUO Y X, LV X L, WANG H. Dense matching with optimized penalty and interpolation for high-resolution optical stereo image pairs[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1-5. [14] YANG S T, CHEN H, CHEN W, et al. Generalized stereo matching based on topological structure consistency for urban 3D reconstruction from satellite imagery[C]//Proceedings of the 2024 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2024: 8745-8748. [15] TATAR N, AREFI H, HAHN M. High-resolution satellite stereo matching by object-based semiglobal matching and iterative guided edge-preserving filter[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(10): 1841-1845. [16] PATIL S, GUO Q. Continuous 3D-label semi-global matching for satellite stereo[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, XLVIII-1/W2-2023: 1499-1505. [17] GONG D C, HUANG X, ZHANG J D, et al. Efficient and robust feature matching for high-resolution satellite stereos[J]. Remote Sensing, 2022, 14(21): 5617. [18] QIN R J. A critical analysis of satellite stereo pairs for digital surface model generation and a matching quality prediction model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 139-150. [19] LI Z J, WU B, LIU W C, et al. Photogrammetric processing of Tianwen-1 HiRIC imagery for precision topographic mapping on Mars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16. [20] YAN W, REN X, LIU J J, et al. Topographic reconstruction of the “Tianwen-1” landing area on the Mars using high resolution imaging camera images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14. [21] ZHOU M Y, YE Z, CHEN H, et al. Stereo matching for lunar surface reconstruction with an improved census cost[C]//Proceedings of the 2024 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2024: 8664-8668. [22] HAMID M S, MANAP N A, HAMZAH R A, et al. Stereo matching algorithm based on deep learning: a survey[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(5): 1663-1673. [23] ZBONTAR J, LECUN Y. Stereo matching by training a convolutional neural network to compare image patches[J]. Journal of Machine Learning Research, 2016,17: 1-32. [24] KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 66-75. [25] CHANG J R, CHEN Y S. Pyramid stereo matching network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5410-5418. [26] GUO X Y, YANG K, YANG W K, et al. Group-wise correlation stereo network[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3268-3277. [27] TEED Z, DENG J. RAFT: recurrent all-pairs field transforms for optical flow[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 402-419. [28] TAO R S, XIANG Y M, YOU H J. Stereo matching of VHR remote sensing images via bidirectional pyramid network[C]//Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2020: 6742-6745. [29] HE S, ZHOU R Q, LI S H, et al. Disparity estimation of high-resolution remote sensing images with dual-scale matching network[J]. Remote Sensing, 2021, 13(24): 5050. [30] HE S, LI S H, JIANG S, et al. HMSM-Net: hierarchical multi-scale matching network for disparity estimation of high-resolution satellite stereo images[J]. ISPRS Journal of Photo-grammetry and Remote Sensing, 2022, 188: 314-330. [31] LIAO P Y, ZHANG X D, CHEN G Z, et al. S2Net: a multitask learning network for semantic stereo of satellite image pairs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 5601313. [32] YANG Q Y, CHEN G Z, TAN X L, et al. S3Net: innovating stereo matching and semantic segmentation with a single-branch semantic stereo network in satellite epipolar imagery[C]//Proceedings of the 2024 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2024: 8737-8740. [33] RAO Z B, LI X, XIONG B S, et al. Cascaded recurrent networks with masked representation learning for stereo matching of high-resolution satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 218: 151-165. [34] ZHANG G B, JIANG Y H, WANG J Y, et al. A general deep learning framework guided by sparse matching for disparity estimation in high-resolution satellite stereo imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-17. [35] ZHOU K, MENG X X, CHENG B. Review of stereo matching algorithms based on deep learning[J]. Computational Intelligence and Neuroscience, 2020, 2020(1): 8562323. [36] GODARD C, MAC AODHA O, BROSTOW G J. Unsupervised monocular depth estimation with left-right consistency[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6602-6611. [37] JIANG L T, XIANG Y M, WANG F, et al. Unsupervised stereo matching network for VHR remote sensing images based on error prediction[C]//Proceedings of the 2024 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2024: 7057-7061. [38] IGETA T, IWASAKI A. An unsupervised network for stereo matching of very high resolution satellite imagery[C]//Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2022: 971-974. [39] ALBANWAN H, QIN R. Fine-tuning deep learning models for stereo matching using results from semi-global matching[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, V-2-2022: 39-46. [40] JIANG L T, WANG F, ZHANG W Y, et al. Rethinking the key factors for the generalization of remote sensing stereo matching networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 18: 4936-4948. [41] WANG X, WANG C, LIU B, et al. Multi-view stereo in the deep learning era: a comprehensive review[J]. Displays, 2021, 70: 102102. [42] KANG S B, SZELISKI R, CHAI J X. Handling occlusions in dense multi-view stereo[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2001: 103-110. [43] ABDULLAH R M. A deep learning-based framework for effi-cient and accurate 3D real-scene reconstruction[J]. International Journal of Information Technology, 2024, 16(7): 4605-4609. [44] D??ANGELO P, KUSCHK G. Dense multi-view stereo from satellite imagery[C]//Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2012: 6944-6947. [45] YAO Y, LUO Z X, LI S W, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 785-801. [46] GAO J, LIU J, JI S. Rational polynomial camera model warping for deep learning based satellite multi-view stereo matching[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 6128-6137. [47] LIN L, ZHANG Y B, WANG Z J, et al. A-SATMVSNet: an attention-aware multi-view stereo matching network based on satellite imagery[J]. Frontiers in Earth Science, 2023, 11: 1108403. [48] GAO J, LIU J, JI S P. A general deep learning based framework for 3D reconstruction from multi-view stereo satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 446-461. [49] HUANG X, ZHANG S L, LI J Y, et al. A multitask network for multiview stereo reconstruction: when semantic consistency-based clustering meets depth estimation optimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5612816. [50] MAO Y Q, BI H B, XU L Y, et al. SDL-MVS: view space and depth deformable learning paradigm for multiview stereo reconstruction in remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5641518. [51] HONG Z H, YANG P X, PAN H Y, et al. Highly applicable iterative network for 3-D reconstruction based on multiview satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 10338-10351. [52] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 405-421. [53] CONDORELLI F, RINAUDO F, SALVADORE F, et al. A comparison between 3D reconstruction using NeRF neural networks and MVS algorithms on cultural heritage images[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, XLIII-B2: 565-570. [54] PUMAROLA A, CORONA E, PONS-MOLL G, et al. D-NeRF: neural radiance fields for dynamic scenes[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10313-10322. [55] MARí R, FACCIOLO G, EHRET T. Sat-NeRF: learning multi-view satellite photogrammetry with transient objects and shadow modeling using RPC cameras[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 1310-1320. [56] WAN Q F, GUAN Y Z, ZHAO Q, et al. Constraining the geometry of NeRFs for accurate DSM generation from multi-view satellite images[J]. ISPRS International Journal of Geo-Information, 2024, 13(7): 243. [57] DERKSEN D, IZZO D. Shadow neural radiance fields for multi-view satellite photogrammetry[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 1152-1161. [58] ZHANG L, RUPNIK E. SparseSat-NeRF: dense depth supervised neural radiance fields for sparse satellite images[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, X-1/W1-2023: 895-902. [59] SUN W B, LU Y, ZHANG Y C, et al. Neural radiance fields for multi-view satellite photogrammetry leveraging intrinsic decomposition[C]//Proceedings of the 2024 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2024: 4631-4635. [60] ZHU Z, WOODCOCK C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014, 144: 152-171. [61] SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Advances in Neural Information Processing Systems, 2015: 802-810. [62] ARNAB A, DEHGHANI M, HEIGOLD G, et al. ViViT: a video vision transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 6816-6826. [63] GóMEZ A, RANDALL G, FACCIOLO G, et al. An experimental comparison of multi-view stereo approaches on satellite images[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 707-716. [64] ZENG Y F, GUO Y, LI J Y. Recognition and extraction of high-resolution satellite remote sensing image buildings based on deep learning[J]. Neural Computing and Applications, 2022, 34(4): 2691-2706. [65] XIE S N, TU Z W. Holistically-nested edge detection[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1395-1403. [66] HE J Z, ZHANG S L, YANG M, et al. BDCN: bi-directional cascade network for perceptual edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 100-113. [67] YANG X, WANG X. A building segmentation model for remote sensing images combining multi-scale attention and edge supervision[J]. Journal of Remote Sensing, 2021, 25(11): 2201-2212. [68] DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: self-supervised interest point detection and description[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 337-33712. [69] DUSMANU M, ROCCO I, PAJDLA T, et al. D2-Net: a trainable CNN for joint description and detection of local features[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8092-8101. [70] SUN J M, SHEN Z H, WANG Y A, et al. LoFTR: detector-free local feature matching with transformers[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8922-8931. [71] MáTTYUS G, LUO W J, URTASUN R. DeepRoadMapper: extracting road topology from aerial images[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3458-3466. [72] WANG Y, XIE H, ZHA Z, et al. ContourNet: toward arbitrary-shaped scene text detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5941-5950. [73] ZHOU L C, ZHANG C, WU M. D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 192-196. [74] MAO Y, SUN X, HUANG X, et al. LIGHT: joint individual building extraction and height estimation from satellite images through a unified multitask learning network[EB/OL]. [2024-12-15]. https://arxiv.org/abs/2304.01090. [75] WANG Y, JING X, CHEN W L, et al. Geometry-informed deep learning-based structural component segmentation of post-earthquake buildings[J]. Mechanical Systems and Signal Processing, 2023, 188: 110028. [76] LI Q Y, MOU L C, SUN Y, et al. A review of building extra-ction from remote sensing imagery: geometrical structures and semantic attributes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4702315. [77] SCHNEIDER D. C. Shape from silhouette[M]//Computer vision: a reference guide. New York: Springer, 2021. [78] PEREZ A J, PEREZ-SOLER J, PEREZ-CORTES J C, et al. Alignment and improvement of shape-from-silhouette recon-structed 3D objects[J]. IEEE Access, 2024,12: 76975-76985. [79] ASCENSO G, YAP M H, ALLEN T, et al. A review of silhouette extraction algorithms for use within visual hull pipelines[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2020, 8(6): 649-670. [80] MAHI H, FARHI N, LABED K, et al. The silhouette index and the K-harmonic means algorithm for multispectral satellite images clustering[C]//Proceedings of the 2018 International Conference on Applied Smart Systems. Piscataway: IEEE, 2018: 1-6. [81] SOWMYA A, TRINDER J. Modelling and representation issues in automated feature extraction from aerial and satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2000, 55(1): 34-47. [82] BLOCK J, YAZDANI M, NGUYEN M, et al. An unsupervised deep learning approach for satellite image analysis with applications in demographic analysis[C]//Proceedings of the 2017 IEEE 13th International Conference on e-Science. Piscataway: IEEE, 2017: 9-18. [83] SHOKEEN D V, MATHUR D S. Multiple K means++clustering of satellite image using Hadoop MapReduce and Spark[EB/OL]. [2024-12-15]. https://arxiv.org/abs/1605.01802. [84] GUIENKO G, DOYTSHER Y. Geographic information system data for supporting feature extraction from high-resolution aerial and satellite images[J]. Journal of Surveying Engineer-ing, 2003, 129(4): 158-164. [85] SUBLIME J, TROYA-GALVIS A, PUISSANT A. Multi-scale analysis of very high resolution satellite images using unsupervised techniques[J]. Remote Sensing, 2017, 9(5): 495. [86] WANG X Q, YU X M, LING F L. Building heights estimation using ZY3 data: a case study of Shanghai, China[C]//Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2014: 1749-1752. [87] WANG X Q, JIANG L T, WANG F, et al. Disparity refinement for stereo matching of high-resolution remote sensing images based on GIS data[J]. Remote Sensing, 2024, 16(3): 487. [88] BILLOUARD C, DERKSEN D, SARRAZIN E, et al. SAT-NGP: unleashing neural graphics primitives for fast relightable transient-free 3D reconstruction from satellite imagery[EB/OL]. [2024-12-15]. https://arxiv.org/abs/2403.18711. [89] LI Z X, JI S, FAN D Z, et al. Reconstruction of 3D information of buildings from single-view images based on shadow infor-mation[J]. ISPRS International Journal of Geo-Information, 2024, 13(3): 62. [90] WU T, HU X Y, ZHANG Y, et al. Automatic cloud detection for high resolution satellite stereo images and its application in terrain extraction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121: 143-156. [91] WANG T Y, CHENG Q, JIANG B Y, et al. Spaceborne SAR stereoscopic intersection capability analysis and accuracy verification[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 130: 103926. [92] 李智杰, 程鑫, 李昌华, 等. 跨模态多层特征融合的遥感影像语义分割[J]. 计算机科学与探索, 2025, 19(4): 989-1000. LI Z J, CHENG X, LI C H, et al. Cross-modal multi-level feature fusion for semantic segmentation of remote sensing images[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 989-1000. [93] ZHANG Z A, LI L, JIN W Q, et al. Iterative network for disparity prediction with infrared and visible light images based on common features[J]. Sensors, 2023, 24(1): 196. [94] ZHANG R, ZHOU F, WU L. MFMG-Net: multispectral feature mutual guidance network[J]. Drones, 2024, 8(3): 112. [95] CHEN H, LIU T, YANG J. RGB-multispectral matching: dataset, learning methodology, evaluation[EB/OL]. [2024-12-15]. https://arxiv.org/abs/2206.07047. [96] 肖欣林, 施伟超, 郑向涛, 等. 基于多模型协同的舰船目标检测[J]. 航空学报, 2024, 45(14): 79-89. XIAO X L, SHI W C, ZHENG X T, et al. Multiple models collaboration for ship detection[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 79-89. [97] WU T, YUAN Y J, ZHANG L X, et al. Recent advances in 3D Gaussian splatting[J]. Computational Visual Media, 2024, 10(4): 613-642. [98] YOU H J, LI S K. Building extraction from DSM acquired by airborne 3D image[J]. Geo-spatial Information Science, 2003, 6(3): 25-31. |
| [1] | WEI Zongyue, QIU Dawei, LIU Jing, LI Zhenjiang, CHANG Shaohua. Research and Progress of Deep Learning in Diagnosis of Upper Limb Fractures [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2341-2362. |
| [2] | HUA Chunjian, YAO Yetao, JIANG Yi, YU Jianfeng, CHEN Ying. RGB-D Saliency Detection with Feature Enhancement and Progressive Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2419-2429. |
| [3] | YANG Bin, MA Tinghuai, HUANG Xuejian, WANG Yubo, WANG Zhaoming, ZHAO Bowen, YU Xin. Time Series Anomaly Detection Based on Spatio-Temporal Feature Fusion and Sequence Reconstruction [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2384-2398. |
| [4] | LIU Xiaojia, CHEN Hongyu, YU Dexin, CHEN Yunjie, ZHOU Yuqin. Review of Trajectory Prediction for Autonomous Vehicles Based on Short-Term and Long-Term Characteristics [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2363-2383. |
| [5] | DONG Jiadong, SANG Feihu, GUO Qinghu, CHEN Lin, ZHENG Chunxiang. Review of Lightweight Object Detection Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2057-2084. |
| [6] | MIN Feng, LIU Yuzhuo, LIU Yuhui, LIU Biao. Multivariate Time Series Prediction Model Based on Mixed Features of Time Domain and Frequency Domain [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2099-2109. |
| [7] | HONG Wei, GENG Peilin, WANG Hongyu, ZHANG Xueqin, GU Chunhua. Local Dynamic Clean-Label Backdoor Attack with Image Salience Regions [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2229-2240. |
| [8] | ZHANG Yifei, LI Yanling, GE Fengpei. Review of Legal Judgment Prediction Based on Graph Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2024-2042. |
| [9] | XU Guangyuan, ZHANG Yaqiang, SHI Hongzhi. Review of Fault-Tolerant Technologies for Large-Scale DNN Training Scenarios [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1771-1788. |
| [10] | CHEN Xu, ZHANG Qi, WANG Shuyang, JING Yongjun. Adaptive Product Space Discrete Dynamic Graph Link Prediction Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1820-1831. |
| [11] | ZHOU Kaijun, LIAO Ting, TAN Ping, SHI Changfa. Review of Research on Image Compression Techniques [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1699-1728. |
| [12] | LI Yunfei, WEI Xia, CAI Xin, LYU Mingyu, LUO Xianghan. TCTP-YOLO: Typical Obstacles and Traffic Sign Detection Methods for Blind Pedestrians [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1540-1552. |
| [13] | ZHOU Nan, DONG Yongquan, YAN Linke, JIN Jiayong, HE Bugui. Research on Exercise Recommendation Fusing Student Knowledge State and Chaotic Firefly Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1620-1631. |
| [14] | ZHU Jiayin, LI Yang, LI Ming, MA Jingang. Review of Application of Deep Learning in Cervical Cell Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1476-1493. |
| [15] | LIANG Jiexin, FENG Yue, LI Jianzhong, CHEN Tao, LIN Zhuosheng, HE Ying, WANG Songbai. Survey on Intelligent Identification of Constitution in Traditional Chinese Medicine [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1455-1475. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/