
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (12): 3243-3256.DOI: 10.3778/j.issn.1673-9418.2508051
• Special Issue on Theory and Technology of Multimodal Large Language Model • Previous Articles Next Articles
LU Bin, LIU Jianfeng, WANG Haolin, ZHANG Yuzhi, CHEN Rui
Online:2025-12-01
Published:2025-12-01
卢斌,刘建峰,王浩琳,张玉志,陈锐
LU Bin, LIU Jianfeng, WANG Haolin, ZHANG Yuzhi, CHEN Rui. Multimodal Information Fusion-Guided Graphical Interface Code Generation Framework for OpenFOAM[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(12): 3243-3256.
卢斌, 刘建峰, 王浩琳, 张玉志, 陈锐. 多模态信息融合指导的OpenFOAM图形界面代码生成框架[J]. 计算机科学与探索, 2025, 19(12): 3243-3256.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2508051
| [1] DURAIVELU K. Digital transformation in manufacturing industry-a comprehensive insight[J]. Materials Today: Proceed- ings, 2022, 68: 1825-1829. [2] CHITALOV D I. Development of an application with a graphical user interface (GUI) to compute in parallel in the OpenFOAM environment[J]. Journal of Physics: Conference Series, 2019, 1399(3): 033001. [3] ADAK R. OpenFOAM GUI development using Python on Blender[R]. Mumbai: IIT Bombay, 2021. [4] WANG J X, CHEN Y X. A review on code generation with LLMs: application and evaluation[C]//Proceedings of the 2023 IEEE International Conference on Medical Artificial Intelligence. Piscataway: IEEE, 2024: 284-289. [5] 顾斌, 于波, 董晓刚, 等. 程序智能合成技术研究进展[J]. 软件学报, 2021, 32(5): 1373-1384. GU B, YU B, DONG X G, et al. Intelligent program synthesis techniques: literature review[J]. Journal of Software, 2021, 32(5): 1373-1384. [6] 杨泽洲, 陈思榕, 高翠芸, 等. 基于深度学习的代码生成方法研究进展[J]. 软件学报, 2024, 35(2): 604-628. YANG Z Z, CHEN S R, GAO C Y, et al. Deep learning based code generation methods: literature review[J]. Journal of Software, 2024, 35(2): 604-628. [7] WANG Y, WANG W S, JOTY S, et al. CodeT5: identifier-aware unified pre-trained encoder-decoder models for code understanding and generation[EB/OL]. [2025-08-10]. https:// arxiv.org/abs/2109.00859. [8] NIJKAMP E, PANG B, HAYASHI H, et al. CodeGen: an open large language model for code with multi-turn program synthesis[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2203.13474. [9] MO W J, LIU Q, WEN X F, et al. RedCoder: automated multi-turn red teaming for code LLMs[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2507.22063. [10] DONG Y H, JIANG X, QIAN J R, et al. A survey on code generation with LLM-based agents[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2508.00083. [11] FENG Z Y, GUO D Y, TANG D Y, et al. CodeBERT: a pre-trained model for programming and natural languages[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2002.08155. [12] LI Y J, CHOI D, CHUNG J, et al. Competition-level code generation with AlphaCode[J]. Science, 2022, 378(6624): 1092-1097. [13] FRIED D, AGHAJANYAN A, LIN J, et al. InCoder: a generative model for code infilling and synthesis[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2204.05999. [14] LI R, ALLAL L B, ZI Y T, et al. StarCoder: may the source be with you![EB/OL]. [2025-08-10]. https://arxiv.org/abs/2305. 06161. [15] BELTRAMELLI T. pix2code: generating code from a graphical user interface screenshot[C]//Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems. New York: ACM, 2018: 1-6. [16] TENG Z W, FU Q C, WHITE J, et al. Sketch2Vis: generating data visualizations from hand-drawn sketches with deep learning[C]//Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2022: 853-858. [17] GUI Y, WAN Y, LI Z, et al. UICopilot: automating UI synthesis via hierarchical code generation from webpage designs [C]//Proceedings of the ACM on Web Conference 2025. New York: ACM, 2025: 1846-1855. [18] XU Y, BO L L, SUN X B, et al. image2emmet: automatic code generation from web user interface image[J]. Journal of Software: Evolution and Process, 2021, 33(8): e2369. [19] BALDWIN T, BHAT M, DENG M K, et al. Web2Code: a large-scale webpage-to-code dataset and evaluation framework for multimodal LLMs[C]//Advances in Neural Information Processing Systems 37, 2024: 112134-112157. [20] HURST A, LERER A, GOUCHER A P, et al. GPT-4o system card[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2410. 21276. [21] DeepSeek-AI, GUO D Y, YANG D J, et al. DeepSeek-R1: incentivizing reasoning capability in LLMs via reinforcement learning[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2501.12948. [22] ZHANG K C, LI J, LI G, et al. CodeAgent: enhancing code generation with tool-integrated agent systems for real-world repo-level coding challenges[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2401.07339. [23] JIMENEZ C, LIERET K, NARASIMHAN K, et al. SWE-agent: agent-computer interfaces enable automated software engineering[C]//Advances in Neural Information Processing Systems 37, 2024: 50528-50652. [24] WANG X Y, CHEN Y Y, YUAN L F, et al. Executable code actions elicit better LLM agents[C]//Proceedings of the 41st International Conference on Machine Learning. New York: ACM, 2024: 50208-50232. [25] YUE L, SOMASEKHARAN N, CAO Y D, et al. Foam-Agent: towards automated intelligent CFD workflows[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2505.04997. [26] SOMAN K, ROSE P W, MORRIS J H, et al. Biomedical knowledge graph-optimized prompt generation for large language models[J]. Bioinformatics, 2024, 40(9): btae560. [27] GUO D Y, REN S, LU S, et al. GraphCodeBERT: pre-training code representations with data flow[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2009.08366. [28] BALTRU?AITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: a survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423-443. [29] PENG C Y, XIA F, NASERIPARSA M, et al. Knowledge graphs: opportunities and challenges[J]. Artificial Intelligence Review, 2023, 56(11): 13071-13102. [30] EHRLINGER L, WOSS W. Towards a definition of knowledge graphs[C]//Joint Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Systems and the 1st International Workshop on Semantic Change & Evolving Semantics co-located with the 12th International Conference on Semantic Systems, 2016. [31] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 1877-1901. [32] LIU P F, YUAN W Z, FU J L, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing[J]. ACM Computing Surveys, 2023, 55(9): 1-35. [33] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[EB/OL]. [2025-08-10]. https://arxiv.org/abs/2005.11401. [34] DORRI A, KANHERE S S, JURDAK R. Multi-agent systems: a survey[J]. IEEE Access, 2018, 6: 28573-28593. [35] LI X Y, WANG S, ZENG S Q, et al. A survey on LLM-based multi-agent systems: workflow, infrastructure, and challenges[J]. Vicinagearth, 2024, 1(1): 9. [36] HE J D, TREUDE C, LO D. LLM-based multi-agent systems for software engineering: literature review, vision, and the road ahead[J]. ACM Transactions on Software Engineering and Methodology, 2025, 34(5): 1-30. [37] XI Z H, CHEN W X, GUO X, et al. The rise and potential of large language model based agents: a survey[J]. Science China Information Sciences, 2025, 68(2): 121101. [38] OMAN P, HAGEMEISTER J. Metrics for assessing a software system’s maintainability[C]//Proceedings of the Conference on Software Maintenance. Piscataway: IEEE, 2002: 337-344. [39] LISO A. Software maintainability metrics model: an improvement in the Coleman-Oman model[J]. Crosstalk, 2001: 15-17. [40] BUSE R P L, WEIMER W R. A metric for software readability[C]//Proceedings of the 2008 International Symposium on Software Testing and Analysis. New York: ACM, 2008: 121-130. [41] BUSE R P L, WEIMER W R. Learning a metric for code readability[J]. IEEE Transactions on Software Engineering, 2010, 36(4): 546-558. [42] Systems and software engineering - systems and software quality requirements and evaluation (SQuaRE) -system and software quality models: ISO/IEC 25010[S]. ISO, 2011. |
| [1] | Anggeluma, WANG Siriguleng, SI Qintu. Overview of Research on Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2302-2318. |
| [2] | SHI Zhenpu, LYU Xiao, DONG Yanru, LIU Jing, WANG Xiaoyan. Research on Development Status of Multimodal Knowledge Graph Fusion Technology in Medical Field [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1729-1746. |
| [3] | FENG Yong, LUAN Chaojie, WANG Rongbing, XU Hongyan, ZHANG Yonggang. Aggregating Global Interaction and Local Interaction for Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1909-1917. |
| [4] | SHA Xiao, WANG Jianwen, DING Jianchuan, XU Xiaoran. Hierarchical Knowledge Graph Embedding and Self-Attention Mechanism for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1508-1521. |
| [5] | ZHOU Jiaxuan, LIU Xianhui, ZHAO Xiaodong, HOU Wenlong, ZHAO Weidong. Self-Supervised Knowledge-Aware Recommendation Model Integrating Adaptive Hypergraph [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1217-1229. |
| [6] | JIN Haibo, FENG Yujing. Social Knowledge-Aware Network Recommendation Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1105-1114. |
| [7] | YE Zhihong, WU Yunbing, DAI Sichong, ZENG Zhihong. Multi-level Fusion Knowledge Graph Completion Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 724-737. |
| [8] | JING Boxiang, WANG Hairong, WANG Tong, YANG Zhenye. Dual-Layer Fusion Knowledge Reasoning with Enhanced Multi-modal Features [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 406-416. |
| [9] | LU Jiamin, ZHANG Jing, FENG Jun, AN Qi. Survey on Construction Method of Temporal Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 295-315. |
| [10] | XUE Di, LI Xin, JIANG Zhangtao, WANG Xiaoyu, LIU Mingshuai. Technical Framework for Visual Question Answering System of Business Knowledge for Case-Related Property [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(12): 3267-3278. |
| [11] | ZHENG Aoze, ZHANG Kunli, LI Yunlong, WANG Ying, YUAN Songrui, WU Pengcheng, JIA Yuxiang, ZAN Hongying. Construction of Industry Chain Knowledge Graph via Large Language Model-Based Verification Enhancement [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(12): 3328-3339. |
| [12] | XU Guoyu, ZHANG Yidan, WEI Xiao, MAO Yangmin. Retrieval-Augmented Perception in Multimodal Large Language Models via Adaptive Routing and Dual-Threshold Pruning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(12): 3257-3266. |
| [13] | ZHANG Jing, HUANG Wenfeng, WU Chunjiang, TAN Hao. Overview of Knowledge Graph Construction and Reasoning Enhanced by Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 2855-2872. |
| [14] | SONG Baoyan, LIU Hangsheng, SHAN Xiaohuan, LI Su, CHEN Ze. Incorporating Relation Path and Entity Neighborhood Information for Knowledge Graph Multi-hop Reasoning Method [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 3046-3058. |
| [15] | FENG Yong, LIU Minghua, WANG Rongbing, XU Hongyan, ZHANG Yonggang. Chinese Entity Recognition Method Integrating Dual Semantic Information and Improved Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2793-2802. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/