[1] HOOI B, SHIN K, SONG H A, et al. Graph-based fraud detection in the face of camouflage[J]. ACM Transactions on Knowledge Discovery from Data, 2017, 11(4): 44.
[2] SEEJA K R, ZAREAPOOR M. FraudMiner: a novel credit card fraud detection model based on frequent itemset mining[J]. The Scientific World Journal, 2014: 252797.
[3] FIORE U, DE SANTIS A, PERLA F, et al. Using generative adversarial networks for improving classification effectiveness in credit card fraud detection[J]. Information Sciences, 2019, 479: 448-455.
[4] 刘颖, 杨轲. 基于深度集成学习的类极度不均衡数据信用欺诈检测算法[J]. 计算机研究与发展, 2021, 58(3): 539-547.
LIU Y, YANG K. Credit fraud detection for extremely imbalanced data based on ensembled deep learning[J]. Journal of Computer Research and Development, 2021, 58(3): 539-547.
[5] HUANG X W, YANG Y, WANG Y, et al. DGraph: a large-scale financial dataset for graph anomaly detection[EB/OL]. [2023-12-26]. https://arxiv.org/abs/2207.03579.
[6] 傅湘玲, 闫晨巍, 赵朋亚, 等. 图表示学习方法在消费金融领域团伙欺诈检测中的研究[J]. 中文信息学报, 2022, 36(9): 120-128.
FU X L, YAN C W, ZHAO P Y, et al. Graph representation learning based group fraud risk detection in the consumer finance domain[J]. Journal of Chinese Information Processing, 2022, 36(9): 120-128.
[7] GE S J, MA G X, XIE S H, et al. Securing behavior-based opinion Spam detection[C]//Proceedings of the 2018 IEEE International Conference on Big Data. Piscataway: IEEE, 2018: 112-117.
[8] KAGHAZGARAN P, ALFIFI M, CAVERLEE J. Wide-ranging review manipulation attacks: model, empirical study, and countermeasures[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 981-990.
[9] ZHANG Z W, CUI P, ZHU W W. Deep learning on graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 249-270.
[10]吴安彪, 袁野, 乔百友, 等. 大规模时序图影响力最大化的算法研究[J]. 计算机学报, 2019, 42(12): 2647-2664.
WU A B, YUAN Y, QIAO B Y, et al. The influence maximization problem based on large-scale temporal graph[J]. Chinese Journal of Computers, 2019, 42(12): 2647-2664.
[11] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
[12] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
[13] 赵港, 王千阁, 姚烽, 等. 大规模图神经网络系统综述[J]. 软件学报, 2022, 33(1): 150-170.
ZHAO G, WANG Q G, YAO F, et al. Survey on large-scale graph neural network systems[J]. Journal of Software, 2022, 33(1): 150-170.
[14] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, 2017: 24-26.
[15] HAMILTON L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 1025-1035.
[16] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, 2018: 1-2.
[17] SHI L S, WANG L, LONG C J, et al. SGCN: sparse graph convolution network for pedestrian trajectory prediction[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8990-8999.
[18] ZHU J, YAN Y J, ZHAO L X, et al. Beyond homophily in graph neural networks: current limitations and effective designs[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 7793-7804.
[19] YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 7444-7452.
[20] LIU Z W, DOU Y T, YU P S, et al. Alleviating the inconsistency problem of applying graph neural network to fraud detection[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1569-1572.
[21] DOU Y T, LIU Z W, SUN L, et al. Enhancing graph neural network-based fraud detectors against camouflaged fraudsters[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 315-324.
[22] ZENG H Q, ZHOU H K, SRIVASTAVA A, et al. GraphSAINT: graph sampling based inductive learning method[C]//Proceedings of the 8th International Conference on Learning Representations, 2020.
[23] LIU Y, AO X, QIN Z D, et al. Pick and choose: a GNN-based imbalanced learning approach for fraud detection[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 3168-3177.
[24] WANG D X, LIN J B, CUI P, et al. A semi-supervised graph attentive network for financial fraud detection[C]//Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 598-607.
[25] ZHANG G, WU J, YANG J, et al. FRAUDRE: fraud detection dual-resistant to graph inconsistency and imbalance[C]//Proceedings of the 2021 IEEE International Conference on Data Mining. Piscataway: IEEE, 2021: 867-876.
[26] FABRIZIO F, EMANUELE R, DAVIDE E, et al. Sign: scalable inception graph neural networks[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020.
[27] SHI Y S, HUANG Z J, FENG S K, et al. Masked label prediction: unified message passing model for semi-supervised classification[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021: 1548-1554. |