[1] LI F Y, SUN F Y, LIU N H, et al. Denoising seismic signal via resampling local applicability functions[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 7501605.
[2] ZHANG Y J, ZHANG H R, YANG Y, et al. Seismic random noise separation and attenuation based on MVMD and MSSA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5908916.
[3] GULUNAY N. FXDECON and complex Wiener prediction filter[J]. Geophysics, 1986, 52: 279-281.
[4] CHEN Y K, MA J T. Random noise attenuation by f-x empirical-mode decomposition predictive filtering[J]. Geophysics, 2014, 79(3): 81-91.
[5] WANG H, CHEN W, HUANG W L, et al. Nonstationary predictive filtering for seismic random noise suppression: a tutorial[J]. Geophysics, 2021, 86(3): 21-30.
[6] 吴招才, 刘天佑. 地震数据去噪中的小波方法[J]. 地球物理学进展, 2008, 23(2): 493-499.
WU Z C, LIU T Y. Wavelet transform methods in seismic data noise attenuation[J]. Progress in Geophysics, 2008, 23(2): 493-499.
[7] 彭才, 常智, 朱仕军. 基于曲波变换的地震数据去噪方法[J]. 石油物探, 2008, 47(5): 461-464.
PENG C, CHANG Z, ZHU S J. Noise elimination method based on curvelet transform[J]. Geophysical Prospecting for Petroleum, 2008, 47(5): 461-464.
[8] 童思友, 高航, 刘锐, 等. 基于Shearlet变换的自适应地震资料随机噪声压制[J]. 石油地球物理勘探, 2019, 54(4): 744-750.
TONG S Y, GAO H, LIU R, et al. Seismic random noise adaptive suppression based on the Shearlet transform[J]. Oil Geophysical Prospecting, 2019, 54(4): 744-750.
[9] OROPEZA V, SACCHI M. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J]. Geophysics, 2011, 76(3): 25-32.
[10] ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
[11] CHEN Y K, ZHOU Y T, CHEN W, et al. Empirical low-rank approximation for seismic noise attenuation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4696-4711.
[12] YU S W, MA J W. Complex variational mode decomposition for slop-preserving denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 586-597.
[13] 高磊, 夏星, 闵帆. 时域与频域自适应SVD融合去噪算法[J]. 郑州大学学报(理学版), 2023, 55(6): 48-54.
GAO L, XIA X, MIN F. An adaptive SVD fusion denoising algorithm in time and frequency domain[J]. Journal of Zhengzhou University (Natural Science Edition), 2023, 55(6): 48-54.
[14] YU S W, MA J W, WANG W L. Deep learning for denoising[J]. Geophysics, 2019, 84(6): 333-350.
[15] GAO L, ZHAO K C, MIN F, et al. Random noise suppression of seismic data through multi-scale residual dense network[J]. Acta Geophysica, 2023, 71(2): 637-647.
[16] ZHANG W, GAO J H, GAO Z Q, et al. Adjoint-driven deep-learning seismic full-waveform inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8913-8932.
[17] WU X M, SHI Y Z, FOMEL S, et al. FaultNet3D: predicting fault probabilities, strikes, and dips with a single convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9138-9155.
[18] MIN F, WANG L R, PAN S L, et al. D2UNet: dual decoder U-Net for seismic image super-resolution reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5906913.
[19] OLIVEIRA D A B, FERREIRA R S, SILVA R, et al. Interpolating seismic data with conditional generative adversarial networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(12): 1952-1956.
[20] 曹义亲, 符杨逸, 饶哲初. 加权密集扩张卷积网络的随机脉冲噪声去除[J]. 计算机工程与应用, 2023, 59(18): 179-189.
CAO Y Q, FU Y Y, RAO Z C. Weighted dense dilated convolutional network for random impulse noise removal[J]. Computer Engineering and Applications, 2023, 59(18): 179-189.
[21] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
[22] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[23] 薛金强, 吴秦. 面向图像复原和增强的轻量级交叉门控Transformer[J]. 计算机科学与探索, 2024, 18(3): 718-730.
XUE J Q, WU Q. Lightweight cross-gating transformer for image restoration and enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730.
[24] 袁姮, 耿仪坤. 特征细化和多尺度注意力的Transformer图像去噪网络[J]. 计算机科学与探索, 2024, 18(7): 1838-1851.
YUAN H, GENG Y K. Feature refinement and multi-scale attention for transformer image denoising network[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1838-1851.
[25] DODDA V C, KURUGUNTLA L, MANDPURA A K, et al. Simultaneous seismic data denoising and reconstruction with attention-based wavelet-convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5908814.
[26] SAAD O M, OBOUé Y A S I, BAI M, et al. Self-attention deep image prior network for unsupervised 3-D seismic data enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5907014.
[27] GAO L, SHEN H S, MIN F. Swin Transformer for simultaneous denoising and interpolation of seismic data[J]. Computers & Geosciences, 2024, 183: 105510.
[28] ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5728-5739.
[29] ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[30] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 11863-11874.
[31] QIAO S, YANG J R, ZHANG T, et al. Layered input GradiNet for image denoising[J]. Knowledge-Based Systems, 2022, 254: 109587.
[32] SHI W Z, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883.
[33] HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. [2024-02-15]. https://arxiv.org/abs/1606. 08415. |