
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (6): 1508-1521.DOI: 10.3778/j.issn.1673-9418.2407019
• Theory·Algorithm • Previous Articles Next Articles
SHA Xiao, WANG Jianwen, DING Jianchuan, XU Xiaoran
Online:2025-06-01
Published:2025-05-29
沙潇,王建文,丁建川,徐笑然
SHA Xiao, WANG Jianwen, DING Jianchuan, XU Xiaoran. Hierarchical Knowledge Graph Embedding and Self-Attention Mechanism for Recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1508-1521.
沙潇, 王建文, 丁建川, 徐笑然. 融合层级知识图谱嵌入与注意力机制的推荐方法[J]. 计算机科学与探索, 2025, 19(6): 1508-1521.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2407019
| [1] 温雯, 邓峰颖, 郝志峰, 等. 时空邻域感知的时序兴趣点推荐[J]. 计算机科学与探索, 2024, 18(7): 1865-1878. WEN W, DENG F Y, HAO Z F, et al. Recommendation method for time-sequence point of interest via spatio-temporal vicinity perception[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1865-1878. [2] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. [3] 王永贵, 刘丹妮. 融合多个性化桥和自监督学习的跨域推荐算法[J]. 计算机科学与探索, 2024, 18(7): 1792-1805. WANG Y G, LIU D N. Cross-domain recommendation algorithm combining multi-personalized bridges and self-supervised learning[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1792-1805. [4] 刘源, 董永权, 陈成, 等. 融合热点与长短期兴趣的图神经网络课程推荐模型[J]. 计算机科学与探索, 2024, 18(6): 1600-1612. LIU Y, DONG Y Q, CHEN C, et al. Graph neural network integrating hot spots and long and short-term interests for course recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1600-1612. [5] WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 5329-5336. [6] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019:950-958. [7] CAO Y X, WANG X, HE X N, et al. Unifying knowledge graph learning and recommendation: towards a better under-standing of user preferences[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 151-161. [8] XIN X, HE X N, ZHANG Y F, et al. Relational collaborative filtering: modeling multiple item relations for recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 125-134. [9] CHEN C, ZHANG M, MA W Z, et al. Jointly non-sampling learning for knowledge graph enhanced recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 189-198. [10] WANG P F, FAN Y, XIA L, et al. KERL: a knowledge-guided reinforcement learning model for sequential recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 209-218. [11] MENG W J, YANG D Q, XIAO Y H. Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1091-1100. [12] WANG C Y, ZHANG M, MA W Z, et al. Make it a chorus: knowledge- and time-aware item modeling for sequential recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 109-118. [13] YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292. [14] SHI C, LIU J, ZHUANG F Z, et al. Integrating heterogeneous information via flexible regularization framework for recommendation[J]. Knowledge and Information Systems, 2016, 49(3): 835-859. [15] SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Tran-sactions on Knowledge and Data Engineering, 2019, 31(2): 357-370. [16] FU T Y, LEE W C, LEI Z. HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017: 1797-1806. [17] WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2022-2032. [18] LU Y F, FANG Y, SHI C. Meta-learning on heterogeneous information networks for cold-start recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1563-1573. [19] SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 297-305. [20] ZHAO K Z, WANG X T, ZHANG Y R, et al. Leveraging demonstrations for reinforcement recommendation reasoning over knowledge graphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 239-248. [21] WANG X, XU Y K, HE X N, et al. Reinforced negative sampling over knowledge graph for recommendation[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 99-109. [22] WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 968-977. [23] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. [24] CHEN X C, HUANG C R, YAO L N, et al. Knowledge-guided deep reinforcement learning for interactive recommendation[C]//Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8. [25] ZHOU S J, DAI X Y, CHEN H K, et al. Interactive recommender system via knowledge graph-enhanced reinforcement learning[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 179-188. [26] JIN J R, QIN J R, FANG Y C, et al. An efficient neighborhood-based interaction model for recommendation on heterogeneous graph[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 75-84. [27] CHEN Y K, YANG Y M, WANG Y J, et al. Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 299-311. [28] ZHOU R, HANSEN E A. Breadth-first heuristic search[J]. Artificial Intelligence, 2006, 170(4/5): 385-408. [29] TARJAN R. Depth-first search and linear graph algorithms[C]//Proceedings of the 12th Annual Symposium on Switching and Automata Theory. Piscataway: IEEE, 1971: 114-121. [30] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. [31] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173-182. [32] KINGMA D, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015. [33] WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426. [34] HU B B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1531-1540. [35] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington: AUAI Press, 2009: 452-461. [36] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. [37] ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362. [38] ZHAO H, YAO Q, LI J, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 635-644. |
| [1] | FENG Yong, LUAN Chaojie, WANG Rongbing, XU Hongyan, ZHANG Yonggang. Aggregating Global Interaction and Local Interaction for Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1909-1917. |
| [2] | ZHOU Nan, DONG Yongquan, YAN Linke, JIN Jiayong, HE Bugui. Research on Exercise Recommendation Fusing Student Knowledge State and Chaotic Firefly Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1620-1631. |
| [3] | HU Zhongze, QIN Hongchao, LI Zhenjun, LI Yanhui, LI Ronghua, WANG Guoren. TCGCL: Complex Network Traffic Classification Algorithm Based on Graph Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1230-1240. |
| [4] | ZHU Yi, JU Chengcheng, HAO Guosheng. MOOCs Knowledge Concept Recommendation Model Based on PathSim [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2049-2064. |
| [5] | LI Xiangxia, CHEN Kairui, LI Bin. Generative Adversarial Network Recommendation System with Multi-dimensional Gradient Feedback Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1579-1589. |
| [6] | LIU Yuan, DONG Yongquan, CHEN Cheng, JIA Rui, YIN Chan. Graph Neural Network Integrating Hot Spots and Long and Short-Term Interests for Course Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1600-1612. |
| [7] | ZHAI Wenshuo, ZHAO Xiang, CHEN Dong. Source Localization of Network Information Propagation via Invertible Graph Diffusion [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1348-1356. |
| [8] | CHEN Linying, LIU Jianhua, ZHENG Zhixiong, LIN Jie, XU Ge, SUN Shuihua. Multi-feature Interaction for Aspect Sentiment Triplet Extraction [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1057-1067. |
| [9] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
| [10] | LI Li, SHI Rongliang, GUO Xu, JIANG Hongxin. Diagnosis of Power System Defects by Large Language Models and Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2643-2655. |
| [11] | JU Chengcheng, ZHU Yi. Knowledge Concept Recommendation Model for MOOCs with Local Subgraph Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 189-204. |
| [12] | GU Junhua, LI Ningning, WANG Xinxin, ZHANG Suqi. Integrating Behavioral Dependencies into Multi-task Learning for Personalized Recommendations [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 231-243. |
| [13] | LI Zhijie, HAN Ruirui, LI Changhua, ZHANG Jie, SHI Haoqi. Entity Relation Extraction Method Integrating Pre-trained Model and Attention [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1453-1462. |
| [14] | HAN Hu, HAO Jun, ZHANG Qiankun, MENG Tiantian. Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 709-718. |
| [15] | TONG Hang, YANG Yan, JIANG Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/