
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (7): 1820-1831.DOI: 10.3778/j.issn.1673-9418.2408023
• Theory·Algorithm • Previous Articles Next Articles
CHEN Xu, ZHANG Qi, WANG Shuyang, JING Yongjun
Online:2025-07-01
Published:2025-06-30
陈旭,张其,王叔洋,景永俊
CHEN Xu, ZHANG Qi, WANG Shuyang, JING Yongjun. Adaptive Product Space Discrete Dynamic Graph Link Prediction Model[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1820-1831.
陈旭, 张其, 王叔洋, 景永俊. 自适应积空间离散动态图链接预测模型[J]. 计算机科学与探索, 2025, 19(7): 1820-1831.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2408023
| [1] ZHANG J N, SHI X J, ZHAO S L, et al. STAR-GCN: stacked and reconstructed graph convolutional networks for recommender systems[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 4264-4270. [2] WANG H, LIAN D F, TONG H H, et al. HyperSoRec: exploiting hyperbolic user and item representations with multi-ple aspects for social-aware recommendation[J]. ACM Trans-actions on Information Systems, 2022, 40(2): 1-28. [3] LIAO L Z, HE X N, ZHANG H W, et al. Attributed social network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2257-2270. [4] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. [5] CHAMI I, YING R, Ré C, et al. Hyperbolic graph convolutional neural networks[C]//Advances in Neural Information Processing Systems 32, 2019: 4869-4880. [6] WEBER M, DOMENICONI G, CHEN J, et al. Anti-money laundering in bitcoin: experimenting with graph convolutional networks for financial forensics[C]//Proceedings of the 2019 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019. [7] DOU Y T, LIU Z W, SUN L, et al. Enhancing graph neural network-based fraud detectors against camouflaged fraudsters[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 315-324. [8] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-06-26]. https:// arxiv.org/abs/1609.02907. [9] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, 2018. [10] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on the Semantic Web. Cham: Springer, 2018: 593-607. [11] PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5363-5370. [12] CHEN J Y, WANG X K, XU X H. GC-LSTM: graph convolution embedded LSTM for dynamic network link prediction[J]. Applied Intelligence, 2022, 52(7): 7513-7528. [13] ZHU Y F, CONG F P, ZHANG D, et al. WinGNN: dynamic graph neural networks with random gradient aggregation window[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 3650-3662. [14] BAI Q J, NIE C L, ZHANG H W, et al. HGWaveNet: a hyper-bolic graph neural network for temporal link prediction[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 523-532. [15] ZHANG K K, CAO Q, FANG G L, et al. DyTed: disentangled representation learning for discrete-time dynamic graph[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 3309-3320. [16] YAO H Y, YU Y L, ZHANG C Y, et al. Fuzzy representation learning on dynamic graphs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(2): 878-890. [17] CONG W, ZHANG S, KANG J, et al. Do we really need complicated model architectures for temporal networks?[C]//Proceedings of the 11th International Conference on Learning Representations, 2023. [18] CHEN C, GENG H Y, YANG N Z, et al. EasyDGL: encode, train and interpret for continuous-time dynamic graph learning[EB/OL]. [2024-06-26]. https://arxiv.org/abs/2303.12341. [19] XIA W W, LI Y C, LI S H. Graph neural point process for temporal interaction prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4867-4879. [20] GRAVES A. Long short-term memory[M]//Supervised sequence labelling with recurrent neural networks. Berlin, Heidelberg: Springer, 2012: 37-45. [21] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1724-1734. [22] CUI X, SONTHALIA R. Hyperbolic and mixed geometry graph neural network[C]//Proceedings of the NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations, 2022. [23] GULCEHRE C, DENIL M, MALINOWSKI M, et al. Hyper-bolic attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, 2018: 6527-6533. [24] LEI H, AKHTAR N, MIAN A. Spherical kernel for efficient graph convolution on 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3664-3680. [25] GU A, SALA F, GUNEL B, et al. Learning mixed-curvature representations in products of model spaces[C]//Proceedings of the 7th International Conference on Learning Representations, 2019. [26] GANEA O E, BéCIGNEUL G, HOFMANN T. Hyperbolic neural networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 5350-5360. [27] WANG Y B, LI P, BAI C Y, et al. TEDIC: neural modeling of behavioral patterns in dynamic social interaction networks[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 693-705. [28] CAI L, CHEN Z Z, LUO C, et al. Structural temporal graph neural networks for anomaly detection in dynamic graphs[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 3747-3756. [29] ZHOU F, XU X, LI C, et al. A heterogeneous dynamical graph neural networks approach to quantify scientific impact[EB/OL]. [2024-06-26]. https://arxiv.org/abs/2003.12042. [30] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2024-06-26]. https://arxiv.org/abs/1803.01271. [31] NARAYAN A, O??N ROE P H. Learning graph dynamics using deep neural networks[J]. IFAC-PapersOnLine, 2018, 51(2): 433-438. [32] YANG M L, ZHOU M, KALANDER M, et al. Discrete-time temporal network embedding via implicit hierarchical learning in hyperbolic space[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1975-1985. [33] LI H, JIANG H, YE D S, et al. DHGAT: hyperbolic representation learning on dynamic graphs via attention networks[J]. Neurocomputing, 2024, 568: 127038. [34] GODINHO L, NATáRIO J. An introduction to Riemannian geometry: with applications to mechanics and relativity[M]. Berlin, Heidelberg: Springer, 2012. [35] YANG M L, ZHOU M, LI Z H, et al. Hyperbolic graph neural networks: a review of methods and applications[EB/OL]. [2024-06-29]. https://arxiv.org/abs/2202.13852. [36] PENG W, VARANKA T, MOSTAFA A, et al. Hyperbolic deep neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 10023-10044. [37] YANG C T. On maps from spheres to Euclidean spaces[J]. American Journal of Mathematics, 1957, 79(4): 725. [38] SHIN H Y, OH H S. Robust geodesic regression[J]. International Journal of Computer Vision, 2022, 130(2): 478-503. [39] UNGAR A A. The hyperbolic square and mobius transformations[J]. Banach Journal of Mathematical Analysis, 2007, 1(1): 101-116. [40] FU X C, LI J X, WU J, et al. ACE-HGNN: adaptive curvature exploration hyperbolic graph neural network[C]//Proceedings of the 2021 IEEE International Conference on Data Mining. Piscataway: IEEE, 2021: 111-120. [41] CUI Q, WU S, HUANG Y, et al. A hierarchical contextual attention-based network for sequential recommendation[J]. Neurocomputing, 2019, 358: 141-149. [42] KRIOUKOV D, PAPADOPOULOS F, KITSAK M, et al. Hyperbolic geometry of complex networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82: 036106. [43] WATKINS C J C H, DAYAN P. Q-learning[J]. Machine Learning, 1992, 8(3): 279-292. [44] PETERS J. Policy gradient methods[J]. Scholarpedia, 2010, 5(11): 3698. [45] ZHANG Y D, WANG X, SHI C, et al. Hyperbolic graph attention network[J]. IEEE Transactions on Big Data, 2022, 8(6): 1690-1701. [46] SEO Y, DEFFERRARD M, VANDERGHEYNST P, et al. Structured sequence modeling with graph convolutional recurrent networks[C]//Proceedings of the 25th International Conference on Neural Information Processing. Cham: Springer, 2018: 362-373. [47] BENSON A R, ABEBE R, SCHAUB M T, et al. Simplicial closure and higher-order link prediction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(48). [48] HAJIRAMEZANALI E, HASANZADEH A, DUFFIELD N, et al. Variational graph recurrent neural networks[EB/OL]. [2024-06-29]. https://arxiv.org/abs/1908.09710. [49] LESKOVEC J, KLEINBERG J, FALOUTSOS C. Graphs over time: densification laws, shrinking diameters and possible explanations[C]//Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York: ACM, 2005: 177-187. [50] ROSSI R, AHMED N. The network data repository with inter-active graph analytics and visualization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2015, 29(1): 4292-4293. |
| [1] | WU Liangcheng, YANG Kai, ZHONG Yiwen, LIN Juan. Reinforcement Learning Particle Swarm Optimization Algorithm for Solving Min-degree Constrained Minimum Spanning Tree [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2110-2122. |
| [2] | FENG Yong, LUAN Chaojie, WANG Rongbing, XU Hongyan, ZHANG Yonggang. Aggregating Global Interaction and Local Interaction for Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1909-1917. |
| [3] | DENG Yanan, WANG Qiuhong, LI Junjie, GU Jingjing. Value Function Factorization for Multi-agent Reinforcement Learning Based on Implicit Communication [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1878-1887. |
| [4] | MENG Xiangfu, SUN Shuonan, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng. Survey on Trajectory Representation Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1437-1454. |
| [5] | CAO Lu, DING Cangfeng, MA Lerong, YAN Zhaoyao, YOU Hao, HONG Anqi. Advances in Node Importance Ranking Based on Graph Neural Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 877-900. |
| [6] | JING Boxiang, WANG Hairong, WANG Tong, YANG Zhenye. Dual-Layer Fusion Knowledge Reasoning with Enhanced Multi-modal Features [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 406-416. |
| [7] | YIN Chan, ZHU Yi, WANG Jinyong, CHEN Xiaoying, HAO Guosheng. Formal Verification of Spatio-Temporal Rules Guided Safe Reinforcement Learning for CPS [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 513-527. |
| [8] | ZHANG Lanze, GU Yijun, PENG Jingjie. Spatial-Frequency Domain Adaptive Graph Neural Network for Heterophilic Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 169-186. |
| [9] | JI Zhong, ZHANG Wenjia. Application Analysis of Ensemble Deep Reinforcement Learning in Portfolio Optimization of Stock Index [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 237-244. |
| [10] | LI Mingyang, XU Ke’er, SONG Zhiqiang, XIA Qingfeng, ZHOU Peng. Review of Research on Multi-agent Reinforcement Learning Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 1979-1997. |
| [11] | WANG Yonggui, CHEN Shuming, LIU Yihai, LAI Zhenxiang. Knowledge-aware Recommendation Algorithm Combining Hypergraph Contrast Learning and Relational Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2140-2155. |
| [12] | SHENG Lei, CHEN Xiliang, LAI Jun. Offline Multi-agent Reinforcement Learning Method Based on Latent State Distribution GPT [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2169-2179. |
| [13] | ZHANG Hongqiang, SHI Jiahang, WU Lianghong, WANG Xi, ZUO Cili, CHEN Zuguo, LIU Zhaohua, CHEN Lei. Multi-agent Self-organizing Cooperative Hunting in Non-convex Environment with Improved MADDPG Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2080-2090. |
| [14] | MENG Zhen, REN Guanyu, WAN Jianxiong, LI Leixiao. Research on Distributed V2V Computation Offloading Method for Internet of Vehicles Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1923-1934. |
| [15] | XIA Qingfeng, XU Ke'er, LI Mingyang, HU Kai, SONG Lipeng, SONG Zhiqiang, SUN Ning. Review of Attention Mechanisms in Reinforcement Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1457-1475. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/