Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (4): 917-926.DOI: 10.3778/j.issn.1673-9418.2010013
• Artificial Intelligence • Previous Articles Next Articles
LU Zhongda1,+(), ZHANG Chunda2, ZHANG Jiaqi2, WANG Zifei2, XU Junhua2
Received:
2020-10-09
Revised:
2021-01-11
Online:
2022-04-01
Published:
2021-01-25
About author:
LU Zhongda, born in 1970, Ph.D., professor. His research interests include pattern recognition and image processing, robot control and nonlinear system.Supported by:
陆仲达1,+(), 张春达2, 张佳奇2, 王子菲2, 许军华2
通讯作者:
+ E-mail: luzhongda@163.com作者简介:
陆仲达(1970—),男,黑龙江哈尔滨人,博士,教授,主要研究方向为模式识别与图像处理、机器人控制、非线性系统。基金资助:
CLC Number:
LU Zhongda, ZHANG Chunda, ZHANG Jiaqi, WANG Zifei, XU Junhua. Identification of Apple Leaf Disease Based on Dual Branch Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 917-926.
陆仲达, 张春达, 张佳奇, 王子菲, 许军华. 双分支网络的苹果叶部病害识别[J]. 计算机科学与探索, 2022, 16(4): 917-926.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2010013
苹果叶部病害 | 数据集 | 训练集 | 验证集 |
---|---|---|---|
花叶病 | 4 875 | 3 412 | 1 463 |
褐斑病 | 5 655 | 3 958 | 1 697 |
锈病 | 5 694 | 3 985 | 1 709 |
灰斑病 | 4 810 | 3 367 | 1 443 |
斑点落叶病 | 5 343 | 3 740 | 1 603 |
总计 | 26 377 | 18 462 | 7 915 |
Table 1 Data distribution
苹果叶部病害 | 数据集 | 训练集 | 验证集 |
---|---|---|---|
花叶病 | 4 875 | 3 412 | 1 463 |
褐斑病 | 5 655 | 3 958 | 1 697 |
锈病 | 5 694 | 3 985 | 1 709 |
灰斑病 | 4 810 | 3 367 | 1 443 |
斑点落叶病 | 5 343 | 3 740 | 1 603 |
总计 | 26 377 | 18 462 | 7 915 |
实验环境配置项 | 参数值 |
---|---|
CPU | Intel®Xeon®Gold 6271C CPU @2.60 GHz |
显卡 | NVIDIA Tesla V100 GPU 32 GB |
内存 | 32 GB |
磁盘 | 100 GB |
深度学习框架 | PaddlePaddle 1.8.4 |
操作系统 | Ubuntu 16.04.1 LTS (64 bit) |
其他工具 | Python 3.7.1 CUDA10.1 |
Table 2 Experiment environment
实验环境配置项 | 参数值 |
---|---|
CPU | Intel®Xeon®Gold 6271C CPU @2.60 GHz |
显卡 | NVIDIA Tesla V100 GPU 32 GB |
内存 | 32 GB |
磁盘 | 100 GB |
深度学习框架 | PaddlePaddle 1.8.4 |
操作系统 | Ubuntu 16.04.1 LTS (64 bit) |
其他工具 | Python 3.7.1 CUDA10.1 |
参数名称 | 参数值 |
---|---|
图像尺寸 | 224×224 |
批尺寸(batchsize) | 60 |
学习率(learning rate) | 0.001 |
训练周期(epoch) | 30 |
Table 3 Experiment parameters
参数名称 | 参数值 |
---|---|
图像尺寸 | 224×224 |
批尺寸(batchsize) | 60 |
学习率(learning rate) | 0.001 |
训练周期(epoch) | 30 |
网络模型 | 准确率(Accuracy)/% |
---|---|
AlexNet | 86.898 |
VGG-16 | 92.255 |
ResNet-50 | 93.013 |
B-CNN | 94.542 |
DBNet | 97.662 |
Table 4 Accuracy of network models
网络模型 | 准确率(Accuracy)/% |
---|---|
AlexNet | 86.898 |
VGG-16 | 92.255 |
ResNet-50 | 93.013 |
B-CNN | 94.542 |
DBNet | 97.662 |
网络模型 | 模型参数/106 | 浮点运算次数/109 | CPU预测时间/ms |
---|---|---|---|
AlexNet | 5.774 8 | 1.17 | 28 |
ResNet-50 | 23.518 3 | 8.19 | 179 |
VGG-16 | 138.357 6 | 30.84 | 501 |
B-CNN | 291.586 8 | 61.69 | 1 138 |
DBNet | 14.037 2 | 17.89 | 225 |
Table 5 Network complexity
网络模型 | 模型参数/106 | 浮点运算次数/109 | CPU预测时间/ms |
---|---|---|---|
AlexNet | 5.774 8 | 1.17 | 28 |
ResNet-50 | 23.518 3 | 8.19 | 179 |
VGG-16 | 138.357 6 | 30.84 | 501 |
B-CNN | 291.586 8 | 61.69 | 1 138 |
DBNet | 14.037 2 | 17.89 | 225 |
网络模型 | 准确率(Accuracy)/% |
---|---|
VGG | 92.255 |
VGG+空洞卷积 | 92.849 |
VGG+空洞卷积 | 93.126 |
VGG+空洞卷积 | 92.836 |
VGG+不对称卷积 | 93.493 |
VGG+空洞卷积 | 94.011 |
VGG+不对称卷积+空洞卷积 | 94.731 |
VGG+不对称卷积+空洞卷积 | 94.883 |
VGG+不对称卷积+空洞卷积 | 95.274 |
Table 6 MS ablation experiments
网络模型 | 准确率(Accuracy)/% |
---|---|
VGG | 92.255 |
VGG+空洞卷积 | 92.849 |
VGG+空洞卷积 | 93.126 |
VGG+空洞卷积 | 92.836 |
VGG+不对称卷积 | 93.493 |
VGG+空洞卷积 | 94.011 |
VGG+不对称卷积+空洞卷积 | 94.731 |
VGG+不对称卷积+空洞卷积 | 94.883 |
VGG+不对称卷积+空洞卷积 | 95.274 |
苹果叶部病害 | VGG+VGG | VGG+MS | VGG+DA | MS+DA |
---|---|---|---|---|
花叶病 | 99.658 | 100.000 | 100.000 | 100.000 |
褐斑病 | 96.994 | 98.055 | 98.232 | 98.939 |
锈病 | 93.680 | 94.499 | 94.675 | 95.846 |
灰斑病 | 95.357 | 95.564 | 97.228 | 97.643 |
斑点落叶病 | 93.637 | 94.448 | 95.757 | 97.005 |
五种苹果叶部病害 | 94.049 | 96.058 | 96.791 | 97.662 |
Table 7 Ablation experiments %
苹果叶部病害 | VGG+VGG | VGG+MS | VGG+DA | MS+DA |
---|---|---|---|---|
花叶病 | 99.658 | 100.000 | 100.000 | 100.000 |
褐斑病 | 96.994 | 98.055 | 98.232 | 98.939 |
锈病 | 93.680 | 94.499 | 94.675 | 95.846 |
灰斑病 | 95.357 | 95.564 | 97.228 | 97.643 |
斑点落叶病 | 93.637 | 94.448 | 95.757 | 97.005 |
五种苹果叶部病害 | 94.049 | 96.058 | 96.791 | 97.662 |
网络模型 | 准确率(Accuracy)/% |
---|---|
文献[ | 94.819 |
文献[ | 95.250 |
文献[ | 96.222 |
文献[ | 96.412 |
DBNet | 97.662 |
Table 8 Contrast experiment of models
网络模型 | 准确率(Accuracy)/% |
---|---|
文献[ | 94.819 |
文献[ | 95.250 |
文献[ | 96.222 |
文献[ | 96.412 |
DBNet | 97.662 |
[1] | 张善文, 张晴晴, 李萍. 基于改进深度卷积神经网络的苹果病害识别[J]. 林业工程学报, 2019, 4(4):107-112. |
ZHANG S W, ZHANG Q Q, LI P. Apple disease identifi-cation based on improved deep convolutional neural net-work[J]. Journal of Forestry Engineering, 2019, 4(4):107-112. | |
[2] | 王冠, 王建新, 孙钰. 面向边缘计算的轻量级植物病害识别模型[J]. 浙江农林大学学报, 2020, 37(5):978-985. |
WANG G, WANG J X, SUN J. Lightweight plant disease recognition model for edge computing[J]. Journal of Zhe-jiang A&F University, 2020, 37(5):978-985. | |
[3] | TIAN Y, ZHAO C J, LU S L, et al. Multiple classifier com-bination for recognition of wheat leaf diseases[J]. Intelli-gent Automation & Soft Computing, 2011, 17(5):519-529. |
[4] | HIARY H A, AHMAD S B, REYALAT M, et al. Fast and accurate setection and classification of plant diseases[J]. International Journal of Computer Applications, 2011, 17(1):31-38. |
[5] | 师韵, 黄文准, 张善文. 基于二维子空间的苹果病害识别方法[J]. 计算机工程与应用, 2017, 53(22):180-184. |
SHI Y, HUANG W Z, ZHANG S W. Apple disease recog-nition based on two-dimensionality subspace learning[J]. Computer Engineering and Applications, 2017, 53(22):180-184. | |
[6] | 孙素云. 基于图像处理和支持向量机的苹果树叶部病害的分类研究[D]. 西安: 西安科技大学, 2017. |
SUN S Y. Classification of apple leaf diseases based on image processing and support vector machine[D]. Xi’an: Xi’an University of Science and Technology, 2017. | |
[7] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
DOI URL |
[8] | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with con-volutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9. |
[9] | 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11):161-171. |
ZHANG J H, KONG F T, WU J Z, et al. Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China Agricultural University, 2018, 23(11):161-171. | |
[10] | 胡志伟, 杨华, 黄济民, 等. 基于注意力残差机制的细粒度番茄病害识别[J]. 华南农业大学学报, 2019, 40(6):124-132. |
HU Z W, YANG H, HUANG J M, et al. Fine-grained tomato disease recognition based on attention residual mechanism[J]. Journal of South China Agricultural University, 2019, 40(6):124-132. | |
[11] | 王昌龙, 张远东, 缪宏, 等. 双通道卷积神经网络在南瓜病害识别上的应用[J]. 计算机工程与应用, 2021, 57(5):183-189. |
WANG C L, ZHANG Y D, MIAO H, et al. Application of double channel convolutional neural network in pumpkin diseases identification[J]. Computer Engineering and App-lications, 2021, 57(5):183-189. | |
[12] | LIN T Y, ROYCHOWDHURY A, MAJI S, et al. Bilinear CNN models for fine-grained visual recognition[C]// Procee-dings of the 2015 IEEE International Conference on Com-puter Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1449-1457. |
[13] |
MCNEELY-WHITE D G, BEVERIDGE J R, DRAPER B A. Inception and ResNet features are (almost) equivalent[J]. Cognitive Systems Research, 2020, 59:312-318.
DOI URL |
[14] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
DOI URL |
[15] |
PENG J, CHEN Y H, LIU B, et al. Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks[J]. IEEE Access, 2019, 7:59069-59080.
DOI URL |
[16] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deep-Lab: semantic image segmentation with deep convolu-tional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2018, 40(4):834-848. |
[17] | DING X H, GUO Y C, DING G G, et al. ACNet: streng-thening the kernel skeletons for powerful CNN via asymme-tric convolution blocks[C]// Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Washington: IEEE Computer Society, 2019: 1911-1920. |
[18] | JENIFA A, RAMALAKSHMI R, RAMACHANDRAN V. Cotton leaf disease classification using deep convolution neural network for sustainable cotton production[C]// Pro-ceedings of the 2019 IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development, Krishnankoil, Dec 18-20, 2019. Washington: IEEE Computer Society, 2019: 1-3. |
[19] |
WAHEED A, GOYAL M, GUPTA D, et al. An optimized dense convolutional neural network model for disease re-cognition and classification in corn leaf[J]. Computers and Electronics in Agriculture, 2020, 175:105456.
DOI URL |
[20] |
SYARIEF M, SETIAWAN W. Convolutional neural network for maize leaf disease image classification[J]. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2020, 18(3):1376-1381.
DOI URL |
[21] | KHAN A I, QUADRI S M K, BANDAY S. Deep learning for apple diseases: classification and identification[J]. Inter-national Journal of Computational Intelligence Studies, 2021, 10(1):1-12. |
[1] | YANG Zhiqiao, ZHANG Ying, WANG Xinjie, ZHANG Dongbo, WANG Yu. Application Research of Improved U-shaped Network in Detection of Retinopathy [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1877-1884. |
[2] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[3] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[4] | LI Yunhuan, WEN Jiwei, PENG Li. High Frame Rate Light-Weight Siamese Network Target Tracking [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1405-1416. |
[5] | ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106. |
[6] | TONG Gan, HUANG Libo. Review of Winograd Fast Convolution Technique Research [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 959-971. |
[7] | ZHAO Pengfei, XIE Linbo, PENG Li. Deep Small Object Detection Algorithm Integrating Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 927-937. |
[8] | PEI Lishen, ZHAO Xuezhuan. Survey of Collective Activity Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. |
[9] | HUANG Siyuan, ZHAO Yuhai, LIANG Yiming. Code Search Combining Graph Embedding and Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 844-854. |
[10] | WANG Yanni, YU Lixian. SSD Object Detection Algorithm with Effective Fusion of Attention and Multi-scale [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 438-447. |
[11] | JIANG Guangfeng, HU Pengcheng, YE Hua, YANG Yanlan. Isomorphic Graph Classification Model Based on Reconstruction Error [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 185-193. |
[12] | LI Zhixin, CHEN Shengjia, ZHOU Tao, MA Huifang. Combining Cascaded Network and Adversarial Network for Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 217-230. |
[13] | CAI Mingxin, SUN Jing, WANG Bin. Multi-aspect Semantic Trajectory Similarity Computation Model [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1632-1640. |
[14] | CHEN Junfen, ZHANG Ming, ZHAO Jiacheng, XIE Bojun, LI Yan. Deep Clustering Algorithm Based on Denoising and Self-Attention [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1717-1727. |
[15] | ZHANG Han, JIA Tianyuan, LUO Fang, ZHANG Sheng, WU Xia. Study on Predicting Psychological Traits of Online Text by BERT [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1459-1468. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/